ED 047 514
AUTHOR

TITLE
INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 008 737

Friend, Jamesine; Atkinson, R. C.
Computer-Assisted Instruction in Programming: AID.
Stanford Univ., Calif. Inst. for Mathematical
Studies in Social Science.

National Aeronautics and Space Administration,
Washington, D.C.

TR=164U

25 Jan 71

91p.; Psychology Series

*Computer Assisted Instruction, Computer Progranms,
*Computer Science Education, Manuals, Military
Training, *Programing, Programing Languages,
*Tutorial Programs, Undergraduate Study

AID, Algebraic Interpretative Dialogue, NASA,
National Aeronautics and Space Administration

A computer-assisted course on programing, consisting

of a set of 50 lesscons, was developed for and is now being used by
National Aeronautics and Space Administration (NASA) personnel. The
course is intended for students at about the junior college level
with no exrerience in mathematics beyond high school algebra and withk
no previous introduction to computer programs. The programing
language taught in the course is AID (Algebraic Interpretative
Dialogue), a high-1lwzvel algebraic programing language with extensive
interactive (cr conversational) abilities. The results of the use of
the course with NASA personnel and with other students have been
extremely encouraging: student motivation has been highj; and

performance,

documentation,

good. Appendices include: the student manual, AID
an outline of AID lessons, excerpts from the coder's

manual, and a sample coded problem. (MF)

U.S. DEPARTMENT OF HEALTH, EDUCATION
& WELFARE

OFFICE OF EDUCATION
THIS DDCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DD NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

~ COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

- TECHNICAL REPORTS
» PSYCIIOI.OGV SERIES
T INSTITI)TE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(le of publlmlm lhwm In’ mnunul"lg :ubul:sh'ond tltlmlmgmt from title of Technical Report, . !
n in parentheses. .

X BT (Fw npwtl no, | - 44, anMIell Raport no. 125.) - ' :

‘80 R. c. Mklnlonmdk. c. C|lfn. Matharmlul Imlng !hoery Januuy 2, 1563, (In 8, 8. Wolmln (Ed.), Selamlfle z ology. New vu-k-
. L Bulc Bookl, lm., 1965, - Pp. 254-275) . . ,
. ’5lv : P. Supnl, E Croﬂnn md R. W|Ir. Appllmlon of mthcmﬂul lnmlng tlnwy and Ilnwls!le mlyull to vowel. phoneme matching In

‘M, 67, 52-55) :
ngwllh lnur-ml femmng. Amra |963. .

-I 8)

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

by

Jamesine Friend and R. C. Atkinson

TECHNICAL REPORT 164

January 25, 1971

“'PERMISSION TO REPRODUCE THIS
COPYRIGHTED MATERIAL ijiﬁt'i!l GRANTED

By 8 e

70 ERIC AND ORGAMIZATIONS OPERATING PSYCHOLOGY SERTES
UNDER AGREEMENTS WITH THE U.S. OFFICE OF

EDUCATION. FURTHER REPRODUCTION OUTSIDE

THE ERIC SYSTEM REQUIRES PERMISSION OF

THE COPYRIGHT OWNER."”

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

(@ 1971 by Jamesine Friend and R. C. Atkinson
All rights reserved
Printed in the United States of America

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TABLE OF CONTENTS

I. Computer-assisted Instruction in Programming . .
II. Description of the Course, "Introduction to Programming:
ITT.. Preliminary Results . « « « &« ¢« &« ¢ o &
Iv. 4 Computer Programs and Coding Language .
APPENDICES
A. Student Manual . + &+ ¢ ¢« o ¢ ¢ o o &
B. AIDlDocu.mentation B
C. Outline of AID Lessons o o e e
D. Excerpts from the Coders"Manual . .

‘Sample Coded Problem « « ¢« « o &

COMPUTER-ASSTSTED INSTRUCTION IN PROGRAMMING: AID*
Jamesine Friend and R. C. Atkinson

Stanford University
Stanford, California 94305.

I. Computer-assisted Instruction in Programming

Research in learning theory and instructional strategies has received
a new impetus in recent years from technological developments in the field
of computer design. Computer-assisted instruction, entirely unknown ten
years sgo, is <vidence of the rapid growth of computer applications in
education and is already producing profound effects in the individualization
of instruction. Since January, 1963, the Institute for Mathematical Studies
in the Social Sciences has been conducting extensive programs of research
and development in computer-assisted instruction.

In 1968, the Institute received funding from NASA to design and produce
a course in programming using computer-assisted instruction as the instruec-
tional medium. The course was to be tutorial in nature and sufficiently
self-contained so that students could use it without being supervised by an
experienced teacher of programming. Supplementary material, such as manuals
and a syllabus of readings in computer sciences, was to be supplied as part
of the package.

The course was to be suitable for use by NASA personnel, and the feasi-
bility of using the course as part of their training program was to be
investigated. It was assumed that students would be at about the junior
college level with no experience in mathematics beyond high school algebra
and with no previous introduction to computer programming.

Work on the development of the course started in the summer of 1968.

A preliminary version of helf of the course was completed by February, 1969,

and consisted of a coding language, a set of 20 one-hour lessons written in

*This research was supported by NASA Research Grant NGR-05-020-24L.

the coding lunguage, and a set of programs to interpret coded lessons and to
interact with students using standard teletypes as student stations.

In the spring of 1969, aboui 15 students toock the course. Performance
data were collected (by hand) and summarized, and students were closely
observed and interviewed after each session. The curriculum materials and
necessary computer programs were revised and extended on the basis of data
and observations of student reactions. The revised course is now complete
and in use by NASA personnel. Data are being collected and analyzed.

The first decision made in the development of an introductory course
in programming was what programming language to teach. Programming languages
designed expressly for teaching purposes were not considered, since we felt
that users of the course would benefit more from learning a languasge with
immediate practical application, even if the language was initially more
difficult to learn; for this same reason we felt that the language should
be one that is widely aveilablie rather than one that is implemented on only
a few computers, or only on computers produced by one manufacturer. Also,
we anticipated that most students would eventually be working in an engi-
neeving or scientific environment and would have more need for an algebraic
language such as FORTRAN than for a 1li.t-processing language such as LISP
or a business-oriented language like COBOL.

The programming languages considered included FORTRAN, ALGOL, BASIC,
and AID. For a first course, BASIC and AID are both excellent choices,

‘ becauQe they are considerabiy simpler than either FORTRAN and ALGOL; never-
theless, they contain all of the struclure needed to illustrate the basic
principles of programming. AIDl (Algebraic Interpretive Dialogue) is a
high-level algebraic programming language with extensive interactive (or

"conversational) abilities. This language is an adaptation for the PDP-10

lSee PDP-10 AID Programmer's Reference Manual, Digital Equipment Corporation,
Maynard, Massachusetts, 1968.

computer of JOSS,2 a language developed by RAND Corporation for use by
scientists, engineers, etc., who needed a powerful, easy-to-learn tool
capable of performing complex algebraic tasks. A number of other miaor
variants of JOSS, such as CAL and FOCAL, are not implemented on a variety

of computers. A complete description of AID will be found in the appendices.
BASIC,3 which was developed at Dartmouth as an elementary algebraic language
for beginning students, is now widely implemented and is probably better
known than AID (partly because all implementations use the same name).

BASIC is somewhat more powerful than AID in its matrix manipulation commands,
but ALD has more power in recursively defined arithmetic functions. The
greatest advantage of ATD over BASIC, FORTRAN, or COBOL is that AID is not

a compiler, but an interpreter with a large number of direct commands, which
the student can begin to use the.first day rather than having to delay hands-
on experience until after he has learned the concept of a stored program and
the necessary formats. These interactive capabilities #ve a great asset to
a student just learning a programming language since they provide a kind of
immediste reinforcement that cannot be supplied by a corpiler. All in all,
it was relt that AID had a slight edge as a beginner's language, but the
final deciding factor was that ATD had already been implemented for the
PDP-10 computer we would bé using, whereas BASIC would not be availsble to
us for several months. Since that time, we have obtained a BASIC compiler
and have completed a high school course in BASIC using the sauve structure

and programs developed for the AID course.

2See Mark, S. L., and Armerding, G. W., The JOSS Primer. The RAND Corpora-
tion, Santa Monica, California, August, 1967; Shaw, J. S., JOSS: Experience
with an Experimental Computing Service for Users at Remote Typewriter
Consoles. The RAND Corporation, Santa Monica, California, May, 1965.

w

See Kemeny, John G. and Kurtz, Thomas E., BASIC, Dartmouth College Compu~
tation Center. 1968.

IT. Description of the Course "Introduction to Programming:AID"

The course consists of a set of 50 lessons, about one hour in length,
plus summaries, reviews, tests, end extra-credit problems. A student manual,
which includes instructions for operating the instructional program and a
glossary of terms used in the course, has been prepsred and is included in
the appendices of this report. The course is equivalent to a three-unit
Junicr college course.

The computer-assisted instruction and supplementary manuasl cornstitute
a completely self-contained course. The lessons are tutorial in nature,
that 1s, no previous knowledge of computers or programming is necessary.

The only prerequisite for the course is a good background in algebra, as
supplied by three semesters of high school algebra.

. Computer-assisted instruction is given to the students by means of
standard Model-33 teletypewriters, located in remote trasining centers,
which will communicate with the PDP-10 computer located at Stanford by means
of ordinary telsphone lines. The proviems are typed on the student's tele-
type by the computer and the student responds by typing his answers on the
same teletype. After the computer analyzes the student's response, the
student is informed as to whether his response was correct or incorrect,
then he is given additional instruction and asked to respond again, or he
is given a different problem.

The course does not require the supervision of & trained teacher of
programming, but a one-day teachers! workshop should be given to acquaint
teachers with operating procedures and to provide them with an overview of
the content of the course.

Although the course is ordinarily used on a regularly scheduled basis
in 8 college environment or training center, it is also well suited for
individual use as an on-the-job training course for peopie Working.in assoc-
iation with & computer facility. Use by individuals can be on a nonscheduled
basis or on a fiexibly scheduled basis, since there are few time restrictions’
on the use of‘the‘computer; sdme students might prefer to spend several hours
a dsy on the course, with the possibility that they could complete the course

within a few weeks rather than distributing their lessons over several months.

The 50 lessons cover the following fundamental concepts of programming
and the use of computers.

(1) An interactive time-sharing executive system.

(2) An interpreter.

(3) Coucept of a stored program.

(4) Debugging technigues.

(5) Labels and variables.

(6) Loops.

(7) 1Input and output.

(8) Computer storage, including both core and disk.

(9) Subroutines.

(10) Recursive functions.

(ll) List sorting and table look-up routines.
The student is required to write and debug at least 50 programs, several of
which are major programs for solving difficult algebraic problems. An out-
line of the course is found in the appendices.

Each lesson covers one basic concept, varying in length from 50 to 200
problems and requiring about one hour for an average student to complete.
A lesson contains three sections: a core lesson, a summary, and a review.
Selecfed lessons contain an additional extra-credit section. The core lesson
contains about 20 to 30 problems that present the concept and supplies some
practice problems. At the end of the core lesson there is an optional summary
of the lesson; the summary is typed in an 8 L/Zﬂx 11" format, which the
student can save as a permanent reference. Following the summary, there is
an optionul review section, which is livided into several parts, one for
each idea presented in the core lesson, so that the student may review only
that part of the lesson that he ¢id not completely understand. The review
problems, like the problems in tle core lesson, are tutorial, not merely
additional practice and present the ideas afresh from a different point of
view. After the review section, there may be a short section of optional
extra-credilt problems; these are usually programming problems, which are
much more difficult than the programming problems given in either the review
or the core lesson. Most of the extra-credit problems require considerable

thought and time, and the student is not expected to complete them during

a current session, but may, instead, submit them at any time before the end
of the course. Extra-credit problems are not supplied with each lesson, but
there are at least 50 such problems in the entire course, and the teacher
may wish to require some of these problems as homework assignments, or he
may use them as tests.

After each group of five lessons, there is an optional self-test designed
to help the student evaluate his understanding of the concepts presented to
date. Since this test is designed for student's use and not for grading pur-
poses, no report on student performance will be available to the teachers.
Following the self-test, there is a general overview lesson that reminds the
student of what has been taught and informs him which of the topics already
covered are essential to the subsequent materigl. During the overview lesson,
the student is given the opportunity to review entire lessons, or any indivi-
dual topics from preceding lessons.

The structure of the course is illustrated in Figure 2 by a block diagram
of a set of five lessons (with summariés, reviews and extra-credit problems),
followed by a self-test and arn overview lesson.

Before discussing details of the instructional strategy, we give a few
examples of student interaction with the4instructional program, starting
with the first problems in Iesson 1. On a student's first day, he is given
a student manual and seated at a teletype connected by telephone lines to
the PDP-10 computer at .Stanford. Following the instructions in the student
manual (see the manual in the appendices), he signs on and starts the in-
structional program, which automatically starts at Lesson 1, Prboblem 1, for
a new student. The program prints each problem in turn, then prints an
astefisk to indicate to the student that he can respond, and awaits his
response before proceeding. In the following typical sequence, the student's

responses are marked by an asterisk at the left.

Ll-1: INTRODUCTION TO PROGRAMMING
' BY JAMESINE E. FRIEND

IN THE FIRST LESSON YOU WILL IEARN HQW TO USE THIS PROGRAM.

AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEY.
CAY YOU FIND THE RETURN KEY? ‘

10

M3TA
-=I3AQ

3183y
~J13s

i

2sIno0) JO aInlonIls

*T aIndtd

*3UTT UTIBW JY} MOTSq UMOUS aie mcommmw Teuot1do

.|LYI payasw axe sjurod UOTSIOIP JUSPNIS

*UOSSIT MITAIAAG Pur ‘1S9L-JT3g ‘(swsTqold
1TPaI)-8I3Xd DUB ‘SMITAdY ‘sSaTIBUUMS u3TM) SuossaT & SulpnTiuT ‘usoys ST MOOTq UOSSaT dUQ

mEmHQOMm‘
31PaI)
-BI13Xg

S

uossoy
MOTASY

g
uossey
Lreummg

L1

swarqoxd
3TPaID
-Bx3Xd

uossa]
HITASY

uossv]
Lxeuung

uossa]

B

uossa]

uossI

11

Aruitoxt provided by Eic:

E\.

*YES
GOOD, DON'T FORGET TO ,PRESS THE RETURN KEY AFTER YOU TYPE YOUR ANSWERS,

L1-2: WRONG ANSWERS ARE NOT COUNTED. YOU ALWAYS GET ANOTHER CHANCE
IF YOUR ANSWER IS WRONG.

WHAT DOES THE COMPUTER PRINT WHEN IT IS READY FOR YOUR ANSWER?
A, AN EXCLAMATION POINT !
B, A QUESTION MARK ?
C. AN ASTERISK ¥

TYPE "A", "B", OR "C". (DON'T FORGET THE RETURN KEY.)

*C
CORRECT

11-3: IF MULTIPIE-CHOICE PROBLEMS HAVE MORE THAN ONE CORRECT ANSWER,
YOU MAY LIST THE CORRECT CHOICES IN ANY ORDER.

SUPPOSE B, C, AND D ARE THE CORRECT CHOICES FOR A PROELEM. WHICH OF
THESE WOULD BE CORRECT WAYS TO ANSWER?
A, D, B, C, A
B. B, D,
¢. B, C,
D. D, B,

Qo

*B
YOU HAVE.:'T FOUND ALL OF THE ANSWERS YET. START AGAIN.

*BCD
CORRECT

ILesson 1, a short introduction to the teaching program, continues by
explaining to the student the various problem formats he will encounter in
the course and gives him an opportunity to practice each of these formats.
The second lesson begins by teaching the student how to start and stop the
AID interpreter and how to use a few simple, direct commands to solve

arithmetic problems.

L2-1: LESSON 2
USING AID FOR ARITHMETIC

IN THIS COURSE YOU WILL USE TWO DIFFERENT PROGRAMS:
1. THE TEACHING PROGRAM. YOU ARE USING THE TEACHING PROGRAM NOW.
THE TEACHING PROGRAM WILL TEACH YOU TO WRITE PROGRAMS USING THE
ATD LANGUAGE,

12

2. THE AID INTERPRETER. AFTER YOU LEARN TO WRITE -AID PROGRAMS, YOU
WILL USE THE AID INTERPRETER TO TRY OUT YOUR PROGRAMS.

YOU WILL ONLY BE ABLE TO USE ONE OF THE PROGRAMS AT A TIME SO YOU HAVE
TO KNOW HOW TO STOP A PROGRAM AND START ANOTHER,

WHICH PROGRAM ARE YOU USING NOW?

*THE TEACHING PROGRAM
CORRECT

I2-2:

HOW TO START THE AID INTERPRETER:
FIRST, STOP THE TEACHING PROGRAM (TYPE CTRL-~C).
SECOND, TYPE "L ATD" AND THE RETURN KEY.

HOW TO STOP THE AID INTERPRETER:
TYPE CTRL-C.

AFTER THE TEACHING PROGRAM IS STOFPFED, WHAT SHOULD YOU TYPE TO START
THE AID INTERPRETER?

*CTRL-C
WRONG, TYPE A QUESTION MARK FOR A HINT OR CTRL-T FOR THE ANSWER,

*9
READ THE SECOND STEP UNDER "HOW TO START THE AID INTERPRETER."

*L AID
CORRECT

12-3: WHICH COMMAND WILL STOP THE AID INTERPRETER?

A. CIRL-H
B. CTRL-T
C. CTRL-C
D. CTRL-G
*C

CORRECT

After some practice in starting and stopping the AID interpreter, the
TYPE command is introduced and the student practices using commands like
TYPE 15 + 249
TYPE 76 - 3 + b2 |

Lesson 2 glso introduces the symbols * and / for multiplication and division.
i 13

L2-10: ATD SYMEOLS FOR ARITHMETIC OPERATIONS:

+ ADDITION
- SUBTRACTION
% MULTIPLICATION
/ DIVISION

WHICH COMMANDS WILL CAUSE AID TO MULTIPLY 3 by 4?

A. TYPE (3)(4)
B. TYPE 3 X4
C. TYPE 3 * 4
D. TYFE 3/h4
E. TYPE 3%}

*A
WRONG

YOU HAVEN'T FOUND ALL OF THEM, START OVER.

*CE
CORRECT

12-11: WHICH COMMAND WILL CAUSE AID TO MULTIPLY 25 BY 5 AND DIVIDE
BY 37

A. IYPE 25 X 5/3
B. TYPE 25 % 5/3
C. TYPE 25(5/3)
N. NONE OF THE ABOVE

*B
CORRECT

At the end of each lesson, the student is ask'ed if he wants a summary
of the lesson to save as a permanent -reférence. The summaries are printed
in 8 1/2 x 11" format, so that they mey be punched and put in a loose-leaf
note book. The following summary of Lesson 2 is typical.

SUMMARY OF LESSON 2
USING AID FOR ARITHMETIC

1., TO START HE AiD INTERPRETER, TYPE
: L AID :

2. TO STOP THE AID INTERPRETER, TYPE
CTRL-C

10

14

3. THE "TYPE" COMMAND
...STARTS WITH THE WORD "TYPE"
...THEN A SPACE
...THEN AN ALGEBRAIC EXPRESSION
...ENDS WITH A RETURN,

YOU TYPE: ATD ANSWERS:
TYPE 24k 24h = 6
TYPE bo/h hosh = 10.5
TYPE 6%1.2 6%1.2 = 7.2
4. THE SYMBOLS FOR ARITHMETIC OPERATIONS :
+ ADDITION
SUETRACTION

* MULTTPLICATION
/ DIVISION

After the summary is printed (if the student requests it), the student
is asked if he wants to review any of the concepts covered in the lesson.
The review, which is about the same length as the lesson, does not cover
topics sequentially as in the original presentatidn,_but.isjinstead organ-
ized into independent sections, once for each concépt so that the student
may review only the parts of the lesson that he wishes; also, the student
is told which topics are important to ensuing lessons, so that he knows
where to concentrate his effort. Here, for example, are é few problems
from the review of Lesson 4 (note that the symbol ¢ is used to denote

exponentiation, i.e., 5%2 means 5")

Rb-1: REVIEW OF LESSON 4
EXPONENTS AND SCIENTIFIC NOTATION

WHICH OF THESE TOPICS DO YOU WANT TO REVIEW NOW°
(BE SURE YOU KNOW THE STARRED TOPICS.)

*A., EXPONENTS
B. USING O AND 1 4S EXPONENTS
*C. ORDER OF ARITHMETIC OPERATIONS
D. USING FRACTIONAL EXPONENTS TO FIND ROOTS
¥E. NEGATIVE EXPONENTS
¥F. FKEADING SCIENTIFIC NOTATION
G. WRITING SCIERTIFIC NOTATION
N. NONE

*C

11

19

Ri-17: IF AN EXPRESSION HAS EXPONENTIATION AND ALSO SOME OTHER OPERATION,
SUCH AS MULTIPLICATION, DO THE EXPONENTIATION FIRST.

TO FIND THE VALUE OF

hx542
DO 5%2 FIRST, THEN MULTIPLY BY k.
WHAT IS THE VALUE?

*100
CORRECT

R4-18: DO EXPONENTIATION BEFORE ADDITION, SUBTRACTION, MULTIPLICATION
OR DIVISION.

50 - 712
*1
CORRECT

313 - 20
*11
WRONG

*=~11
WRONG

*7
CORRECT

In general, students are expected to have had some previous work with
algebra, but it is not assumed that the level of skill is high, or that a
student will remember such concepts &s the use of zero as an exponent, or
the definition of "positive" as contrasted with "non-negative." All such
topics are reviewed at appropriate times for the student who needs a re-
fresher. For example, Lesson 15 ’ whichvintroduces the IF clause, reviews

relations between numbers in the context of introducing new symbols.

115-1: LESSON 15
, RELATIONS, "IF" CLAUSES

SYMEOLS USED FOR RELATIONS:

¥OR "LESS THAN"

FOR "GREATER THAN"

FOR "EQUALS"

FOR "NOT EQUALS"

FOR "LESS THAN OR EQUALS"
FOR "GREATER THAN OR EQUALS"

Yﬁ\ﬂﬁ" vV A

16

TYPE THE SYMBOL FCR
"GREATER THAN OR EQUALS" *>=

CORRECT

"NOT EQUAL" *#
CORRECT :
"LESS THAN" *<
CORRECT

115-2: RELATTONS BEETWEEN NUMEERS CAN BE SHOWN ON A NUMEER LINE,
-3 -2 -1 0 1. 2 3 4

E I I L I il el el e el e e T L

? t ?
X Y z

ANY NUMEER TO THE RIGHT OF 2 IS GREATER THAN 2.

ANSWER TRUE OR FALSE (T OR F):

X>2 *F
Y>2 *F
Z>2 *T
X>Y *F

ANY NUMEER TO THE LEFT OF 2 IS IESS THAN 2.
ANSWER T OR F:

X<2 *T
Y<2 *T
Z <2 ¥F
Z <X P

After reviewing the relations between numbers, Lesson 15 proceeds to
teach the use of conditional commands using the algebraic notation just

introduced.

115-10: WHICH MEANS "Q IS NON-NEGATIVE"?
A. Q>0
B. @>0
C. Q<0
D. Q<=0
N. NONE

3 1 7

5y
R id

i

s

*B
CORRECT

L15-11: NOW THAT YOU KNOW ABOUT THE RELATIONS = # < > <= AND >= I WILL
SHOW YOU HOW TO USE THEM IN ATD COMMANDS,

ANY AID COMMAND CAN EE MODIFIED BY AN "IF" CLAUSE,
EXAMPIES :

SET Z = 2 IF X < 10.

TYPE X ITF X < O.

DO PART 5 IF M = K.

' COMPIETE THIS COMMAND SO THAT Y = Xt2 IF X IS POSITIVE,
SET ¥ = Xt2 IF X....0

*>
CORRECT

115-12: THE NEXT TEW PROELEMS ARE ABOUT THESE COMMANDS.
22.1 SETY=X1IF X > O.
22.15 SETY = -X IF X < O.
22.2 SETY=01IFX = 0.
22.25 TYFE Y.
DO PART 22 FOR X = -3.15.

AFTER STEP 22.25 WHAT WILL ATD ANSWER?

*-3.15
WRONG

*7?
LOOK AT STEP 22.15. IF X IS NEGATIVE, WHAT IS THE VALUE OF Y?

*3.15
CORRECT

Although there is considerable variation in the sequence of problem‘
types within a 1esson and in the style of presenting new concepts, the |
general scheme is to review any necessary algebraic ideas, present new
s;ﬁnbols and new commands, give sample programs Uusing the new cpmmands » and
then give programming problems that can be solved by 'using the ideas Just
introduced. The following is an example of a programming problem from ‘
Lesson 15.

3k

L.5-20: WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE NUMEERS X,
Y AND Z HAVE THE SAME SIGN. THE PROGRAM SHOULD PRINT "DIFFERENT" IF THE
NUMBERS DO NOT ALI HAVE THE SAME SIGN.

TEFORE YOU START, TELL ME WHAT YOUR PROGRAM SHOULD PRINT IF X = -2, ¥ = 3
AND Z = 17

*DIFFERENT
CORRECT

WHAT SHOULD YOUR PROGRAM PRINT IF X = -2, Y = -3 AND 2 = -1°?

*DIFFERENT
WRONG

*SAME
CORRECT

115-21: OK. GO AHEAD AND WRITE THE PROGRAM TO FIND OUT IF THE 3 NUMEERS
ALL HAVE THE SAME SIGN. TEST YOUR PROGRAM FOR THESE VALUES OF X, Y AND Z.

X=2 Y=3 Z=15
X=2 Y=3 2=0

X=-5 Y=-3 2=-1
X=-5 Y=-3 Z=0

At this point the student is expected to stop the teaching program and
to use the ATD interpreter to write and debug his progrem. When he has
completed the program to his satisfaction, he starts the teaching program

again.

WHAT ANSWER DID YOU GET FOR THE LAST PART?

*DIFFERENT
EXCELLENT

DID YOU USE ANY "DEMAND" COMMANDS IN YOUR PROGRAM?

YOU COULD HAVE SAVED YOURSELF SOME TYPING IF YOU HAD STARTED THE PROGRAM
WITH THESE COMMANDS: ‘

DEMAND X

DEMAND Y

DEMAND 2.

15

The student may request additional informetion or suggestions about how'
to write the progrem elther before or after he tries to produce the program.
If the student cannot solve the problem, even using the additional help, he
is shown & correct solution to the problem and is asked to study it carefully,
and to copy and execute it.

There are over 50 programming problems in the course. Many lessons also

supply extra-credit programming problems such as the following.

X15-1: EXTRA~CREDIT PROELEMS FOR LESSON 15

1. WRITE A PROGRAM THAT WILL TYPE "1" IF THREE NUMBERS, A, B, AND C, ARE
DECREASING IN SIZE (I.E. IF A IS LARGEST, B IS NEXT, AND @ IS SMALLEST).
IF A, B, AND C ARE NOT DECREASING, THE PROGRAM SHOULD TYPE "O".

2. WRITE A PROGRAM THAT WILL TYPE "1" IF B IS BETWEEN A AND C; TYPE "O"
OTHERWI3E, (NOTICE I DID NOT SAY WHETHER A WAS LARGER OR SMALLER
THAN C).

In the first few programming problems, the program and the values to
be used for variables are specified in complete detail, and the student is
thoroughly quizzed about the performaence of his program. As the course
develops, the student 1s supplied with less and less complete specifications,
and he 1s encouraged to analyze the instructions and to experiment with dif-
ferent solutions. Also, he is gradually given the responsibility for deter-
mining whether his program is correct, both in the sense of debugging and
in the sense of providing a solution to the stated problem. The aim is not
only to encourage enalytic ability and creative thinking, but also to introduce
the student to the idea that working programmers spend most of their creative
effort in defining the problem (and, in many cases, deciding whether there
is a problem). Further, they spend much of their programming time satisfying
themselves thet they have produced a correct program.

Little has been said so far about how a student interacts with the
teaching program, and how the teaching program is designed to provide in-
dividualized instruction. In order to explain these things, we give some
details of the teaching strategy. |

One of the basic requirements of a tutorial course is to provide for

individuelization of instruction, with the aim of optimizing the lesrning

16

20

process. The course "Introduction to Programming," which is being developed

nder NASA Contract NGR-05-020-244, is designed as an applicatioa of the
results of numerous studies in the techniques of optimizing learning. The
variety of optimization routines used in the course and the consequent rich-
ness of the curriculum material have never before been attempted in a course
of comparable length or scope.

The logic of branching used within problems permits extremely fine
discriminations between student responses and thus provides a mechanism for
remediation that is eppropriate, not only to the specific problem, but also
to the specific student response; i.e., gross discrimination of "correct" and
"incorrect" are not used as the basis for deciding upon appropriate remedia-
tion, as 1s ordinarly done in drill-and-practice materiel or in linearly
programmed courses. Fine discriminations can also be made between correct
responses so that the "correctness" function ranges over a set of positive
as well as negative numbers, and the program responds differentially to
categories of correct as well as incorrect responses. The analysis of
student responses is made by means of twelve basic analysis routines; each
of these routines can return from 2 to 4 different values of the correctness
function. Furthermore, the analysis routines can be used in any Boolean
combination to increase the number of possible values in the range.of the
correctness function. The maximum size of the range of this function, i.e.,
the maximum number of correct-incorrect classifications for a given problem,
has not yet been fully exploited, since it is limited only by the size of
the core buffers in the computer, but we estimate it to be in the neighborhood
of 100. Since the probability of receiving a wide variety of distinguishable
incorrect responses to & given problem is extremely low, the current course
is designed to use from three to ten values for the correctness function,
depending upon the content of the problem. Becvause the.system can respond
differentially to the students, each problem tekes on the aspect of a small
"dialogue" between the computer and the student.

The optimization scheme described above is not, however, the only one
used in the coursé. A second major scheme allows the sfudent to initiate
the dialogue. In the microbranching logic, the student is allowed two

different devices for requesting additional information. The first of these

17

is the HINT command, which may be glven by the student at any time simply

by typing & guestion mark. The instructional system provides an unlimited
number of hints for each problem; in the current course, two hints are
provided for most problems, and as many as six are provided for particularly
difficult problems. By allowing for optional additional instruction, we
keep the pace fast enocugh for the more intelligent, better prepared students
without penelizing those students whose mathematical background is less
edequate.

In addition to the HINT command, there is also a TELL command that may
be used by students at any time. This commend causes the computer to print
the correct answer (or &8 correct answer) to the problem, providing that such
text was coded for the problem, and then branches to the next problem in
sequence. In the current course, sample correct answers are provided for
about 80 pércenﬁ of the problems. There is some evidence that adult students
learn adequately without being required to make overt responses, so students
are in no way penalized, and, in fact, are encouraged to request the answer
whenever they wish. In general, the problems that do not include sample
correct answers are those for which there is no correct answer ("Do you
want a summary of this lesson?"). Two or three representative answers may
be provided for problems that have many correct answers.

To illustrate the kind of hints and answers provided in the course,

we show a few problems from lLesson 8, with comments.

L8-2: WHAT WITL AID ANSWER?
LET M(X) = 3%X

TYPE M(10)
*10 [The student makes an incorrect
WRONG response.]
*9 ; [He types a question mark to get

M(X) = 3*X additional information.]
?
SUBSTITUTE 10 FOR X TO FIND M(10)
* %30 : [He then gives the correct answer.]
CORRECT -
18

22

SUPPOSE YOU HAD ALREADY GIVEN THE ABOVE COMMANDS, AND
THEN GAVE THIS ONE. WHAT WOULD AID ANSWER?

TYPR M(2)
*20 [The student gives a wrong answer.)
WRONG
*6 {...and corrects himself without
CORRECT additiovnal instruction.]
.+« AND WHAT WILL AID ANSWER TO THIS COMMAND?

TYPE M(1)
*3 [The student mekes a correct response
CORRECT on his first try.]

18-3: WHAT WILL AID ANSWER?
IET Q(X) = 2¥X + 7

TYFE Q(5 - 3)
*7 [The student requests a hint.]
QX) = 2#X + 7
t
SUBSTITUTE (5 - 3) -FOR X.
*9 [He gsks for another hint.]
Q(5 - 3)
=Q (2)
= 2%(2) + 7
= 7?77
* [...and finally requests the answer

11 (by typing Ctrl-T, which is an
invisible character).]

The optimization routines described thus far are used in all problems
in "Introduction to Programming." An additional scheme is also used for
problems that require the student to write and debug a program. Since such
problems are necessarily'more complex than the kind used in mos rogrammed
 instruction, there is also a greater need for more highly differentiated
remedial material. For each programming problem, a sequernce of problems
was designed to test the student's understanding of the co.cepts involved.
Additional hints are elso available.

Although the most complex of the optimization routines are used within

problems, provision is also made for optimization at the lesson level. The

19

number of problems that constitute a lesson for a particular student is
dependent upon the responses of that student; for example, in Lesson 3, 2
ntudent may do only 30 problems, or he may do as many as (4, including the
problems in the assoclated remedial lesson. Further, after every five
lessons there is un overview of all preceding material; these lessons con-
sist of five sections (one for each of the preceding lessons), with optional
detailed review. Rach overview lesson is preceded by an opticnal self-test,
which the student may use to evaluate his progress and which provides him
with a basis for deciding which of the sections in the subseguent overview
lessons are appropriate.

One indicator of the richness of the curriculum provided by the pro-
cedures described above 1s the number of different messages that can be
used in the course of a single lesson; in lesson 3, for example, one student
may see 60 different messages, while another student may see as meny as 400.
The number of responses required of a student is also an indicator of the
richness of the curriculum; for Lesson 3 (to use the same example), only 30
responses are required of the good student, but a student who is giving
some incorrect responses and requesting much of the optional material may
meke as many as 200 responses (there is actually no upper limit, since a
student may make any number of iucorrect responses per problem).

Notice that a recurring theme in the optimization schemes is the
provision for student control. There are strong indications from past re-
search, both in computer-assisted instruction and elsewhere, that the
participation of the student in decisions about his course of study signif-
icantly affects the rate of learning. The étudy of motivation in an environment
of computer-assisted instruction has not yet been approached in any very
rigorous way, but preliminary results do indicate that some factors here: may
completely overwhelm others in an experimentasl design. Since curriculum
design cannot always wait on firm research results, provision was made in the
instructional system for nine student control commands (ineluding the HINT,
TELL and GO commands as well as single-character and full-line erase commands,
quick sign-~off, etc.). These control commands are defined by the coder and
may be left undefined if desired. Thus if further testing of the system

20

24

indicates that there should be less student control, the scheme can be easily
modified.

As an illustration of the use of the optimization schemes, a coded
problem teken from Lesson 4 is attached as an eppendix. There is a top-level
problem, followed by eight subproblems which are used as remedistion for
students who are having difficulty with the concept of hierarchy of operations.
The top-level problem reguires the student fo evaluate the expression

5 % 213
(In the AID programming language, an asterisk is used as the symbol for
multiplicstion, and an up-arrow is used as the symbol for exponentiation,
3 would be written 5 ¥ 243 in AID.) If the student

does not understand the precedence of exponentiation over multiplication,

so the expression 5 X 2

he will produce the incorrect response “1000" end will then be given the
message "Wrong, AID would evaluate 213 first. Try again." If the student
produces the correct response (40), he is given the standard correct-answer
message CORRECT and then goes to the next top-level problem {lesson 4,
Problem 6), bypassing all of the following subproblems. For the student who
fails to preoduce the correct answer, an algebraic derivation of the correct
answer is given, and the student goes to the first subproblem. The first
four subproblems lzad the student through the evaluation of the expression
32/kt2 _
and the fifth sﬁbproblem requires the student to evaluate, without detailed
help, the expression
103 * 2,

If the student succeeds, he bypésses the remaining subproblems and proceeds
to the next top-level problem. The last three subproblems aré written for
students who are having considerable difficulty with the concept; these last
three problems present the concept from a dirferent viewpoint and provide
the student with a workable algorithm for solving problems of this type.

The entire sequence of subproblems is tutorial; few remedial séquences
in the course consist solely of edditional ptractice without amplification
of the ideas. The necessary drill on the concepts presented in the course

is attained by introducing th= concepts in such a sequence that immediate

21

practice is provided in the context of presenting the next concept. Thus,
necessary skills are constantly reinforced without the need for extensive
sections of pure drill-and-practice.

ITI. Preliminary Results

The complete teaching system described above is now in use by NASA
personnel, and has been used by a small number of volunteer students from
Stanford University and Woodrow Wilson High School in San Francisco, but
results are not yet available. The preliminary system, which formed the
basis for the present system, was used by ten students in the spring of 1969
and subsequently by another half-dozen who sought out the curriculum designer
to request use of the course. The results were extremely encouraging;
student motivation was high, performance was good, and in all respects, the
preliminary system proved itself both in overall phildsophy andin curiiculum
design. An excerpt from the April-June 1969 progress report is given here.

"A small pilot study was designed during the Spring Quarter, 1969, to
supply information for meaningful revisions of the curriculum and the in-
structional system. Since this was the first trial of the system, the most
useful information would be derived from observations of students' reactions
to the program. There was no plan to collect detailed data or to do any
kind of statistical analysis of data. Ten students were enrolled in the
course on a flexible time scheduling basis; some students were scheduled
three sessions a week, others two, and others came only once a week, depend-
ing upon the wishes of the individual students. The students were allowed
to use the course in whatever way they felt best; but they were restricted
to taking not more than two lessons per session. Also, immediately after
each session, they were to be interviewed briefly.

"The students completed anywhere from three to twenty lessons each,
with about half of them getting as far as Lz2sson 20. In general, the students
who did fewer lessons did so becsuse they spent less time on the lessons
rather than because of any great difficulties with the material. In fact,
the student who had the most difficulty with the course, and made the slowest
progress in relation to the time spent, finished Lesson 13 by the end of the
gquarter and expressed regret that he hadn't been able to spend enough time

to have completed the 20 available lessons.

o 22
‘ y

"Students were timed on several lessons in crder to get a rough idea of
the time which would be necessary for future students to comp.:ete the course.
The average time per problem for Gifferent studenté'ranged from about one
minute per problem to three minutes per problem; the assignments for each
lesson required about as much time as the lesson itself. [In the preliminary
version of the course, progremming probléms were given as additional assign-
ments rather than being incorporated in the lessons as they are now.]

"Extensive notes were taken during interviews with the students and
were summarized in an anecdotal ﬁéekly report. Also, the responses to
individual problems were tabulated and the percentages of correct and in-
correct responses were calculated.. The most frequent incorrect response to
each. problem was also tabulated.

"The students were quite enthusiastic about the course and would have
worked for several hours at & time had they not heen restricted to taking
no more than two lessons per session. Since most of the students'! comments
were about specific problems, there was no.indication that & major revisicu
of the curriculum is needed. The following are a few general observations
based on students' comments and behavior.

"Use of student controls. The student control commands, which were

explained in detail in Iesson 1, were received with enthusiasm. (A control
commend is given by holding down the 'CTRL' key while striking a letter key.)
The commands used were

Ctrl-H (used to request a hint) [This has been changed to a question
mark in the newer version.]

Ctrl-T (used to request the answer)

Ctrl-S (skip to next problem) [This control command is available,
but not stressed in the revision.]

Ctrl-G (used to get another problem or lesson. After the student
types Ctrl-G he is asked to specify the lesson end problem
he desires.)

"Both Ctrl-H and Ctrl-T were used frequently, although there was
noticeable tendency for students to use one or the other but not both.
Ctrl-S was rarely used; in fact, several students were asked, at the end
of Lesson 3, what control commends were available and were not able to
recall Ctrl-S. '

23 27

"Ctrl-G was used much less then enticipated. At the end of the pilot
study, the students were queried about this; several students replled that
they thought they would not be contributing fully to the experiment (the
pilot study) if they skipped any of the lessons; a few students felt that
they would not know what they had skipped and that it might be important to
them in later lessons (this comment was made even in reference to reviews
and self-tests in which there was an explicit statement that no new meterial
would be presented and that it was perfectly acceptable to skip the entire
lesson); only one student consistently chose to review previous lessons and
he commented that he felt he simply repeated the same mistakes without
achieving any noticeable gain in understanding.

"Language confusion. Almost all students evidenced some confusion

between the language they were learning (the ATID programming language) and
the language (English) used in the exposition. Part of this confusion un-
doubtedly arose because the AID language is a subset of English (AID commands
are syntactically correct English sentences containing a verb, ending with
a period [the newer version of AID does not require a period], etc.);
although this is certainly not a complete explanation and it is obvious
that the advantages of teaching an English-based programming language far
outweigh the disadvantages even if it could be shown to be a significant
factor in the language confusion.

"Furthermore, a few students were also puzzled about which program they
were using--the teaching prbgram or the AID interpreter (which they used
for doing assignments); orne student tried to ask the AID interpreter for
hints about an assigned programming problem. It is felt that some confusion
between languages and between programs is almost inherent in the situation
and no satisfactory way of dispelling the confusion has been found.

"Constructed responses to multiple-choice problems. The multiple-

choice problems used in the course consist of a problem statement or
question and a list of possible answers, each of which is labeled with a
letter. For example,
WHICH OF THESE ARE CORRECT AID COMMANDS?
A. TYPE 2 X 3.
B. PRINT 2 +¢ 3.

2h

X

C. TYPE 2 % 3.
N. NONE OF THE ABOVE,

"Students are expected to respond by typing a letter (or list of leticrs)
corresponding to the correct answer (or answers).

"There is a noticeable tendency for students to respond to certain
multiple-choice problems by typing the answer itself rather than typing the
corresponding letter. In the AID course, a response other than a single
letter (or list of letters) is treated as an error, and the message

PLEASE TYPE LETTERS ONLY
ie given. This error message has been found to be remarkably ineffective;
the probability that a student will repeat the same kind of error after
receiving the above error message seems to be greater than one half, possibly
as much as three quarters.

"The tendency to meke the kind of error described above seems to be
influenced by the following factors: [Note: the following remarks were
based on observations and suggest futufe lines of research.]

"l. Answer length. If the number of characters in the answer choice
is small (say, two to six characters), there is a strong tendency to type
the answer itself.

"2. Context. If the problem is preceded by several problems requiring
constructed »esponses, the tendency to construct & response is somewhat
increased. If the preceding constructed responses are closely related to
the choices in the multiple-choice problem, there is an even stronger
tendency to construct a response; for example, if the six preceding problems
require 3-digit numbers as a response, and the ckoices in the multiple-choice
problem are 3-digit numbers, there is a high probability of making an error.

"3, Problem-solving strategy required. There seem to be two distinct
kinds of problem-solving strategies used in producing the answer to a multiple-
choice problem. One is a 'mental construction' of the correct answer, fol-
lowed by a search of the choices for that answer, and the other kind is a
'feasibvility-elimination' epproach in which the student inspects the 1list
off possible answers and chooses that which is most feasible, or eliminates

those choices which are least feasible. (Generally, students working on a

25
29

specific problem will not switch from one strategy to another unless there

is a compelling reason; for lnstance, a student will abandon & 'fuasiblility-
elimination' approech if several choices are equally feasible.) The strategy
a student uses is influenced by the problem statement although there is some
tendency for individual students to prefer one strategy over another. If

the 'mental construction' strategy is used, thé student 1s more likely to
produce an overt construction of the answer, thereby producing an 'error.'

"4. Wording used in problem statement. The wording used in instructions
to the student seems to have some effect on the tendency to give a constructed
answer to & multiple-choice problem. In particular, use of the word 'what!
~in the problem statement prbduces more errors than the word 'which.' For
example, compare 'What command causes AID to give N a value of 12?' with
‘Which command causes AID to give N a value of 127!

"One additional comment: Although the ebove remarks may imply that :the::
error of constructing & response in answer to & multiple-choice question is
a use-mention error, this may not be the case. There are a number of problems
in the course which require a 'partial construction' and there is an observ-
able tendency in students to give a more complete answer than is required;
for example, students tend to enswer 'Do Part 12' rather than *Do' in
response to this problem:

COMPIETE THIS COMMAND TO EXECUTE PROGRAM 12.
~eseee PART 12

"The error of constructing a more complete response than required is
clearly not a use-mention error, and it seems to be closely related to the
error of constructing a response to a multiple. choice problem.

"Answer length, context, required strategy, and wording used in the
problem statement are not the only factors which contribute to the kind of
use-mention error under consideration here; there ere also individual factors,
suck as age and previous experience. ilowever, the above four factors are
the only curriculum-oriented factors which seem to have an effect."

Starting in the summer of 1969, extensive revision of the curriculum
and programs was undertaken. The major changes were the provision for

multiple hints (in the first version, there was only one hint per problem)

26
30

and the provizion of a multiple-strand structure to provide for review les-
sons, summaries, and extra-credit problems. The coding language and programs
were extended considerably. As mentioned before, detailed results are not
available, but all indications are that the revision is extremely successful;
both students and teachers were enthusiastic.

IV. Computer Programs and Coding Language

One of the.major efforts of the AID project has been in the development
of a suitable coding language and & manual explaining the use of that coding
language. The necessity for developing a coding language became apparent
quite early in the planning stage of the system, since no aveailable high-
level language suitable for implementing the kind of optimization schemes
was envisioned. The coding language, INSTRUCT, developed for this project,
was designed to be learned and used easily by inexperienced coders and
writers. Further, the manual, which includes a complete description of the
instructional system, is written for readers who are unfamiliar with com-
puters and programming. There are step-by-step instructions on coding,
processing, and debugging lessons, as well as instructions for initializing
a course, and for defining additional coding commands. The coding commands
are summarized in a separate section, so that the manual can serve as a
reference source as well as a primer; One of the major reasons for produc-
ing such a complete coding manual was to provide an adequate basic document
for the instructional syétem should it be implemented on another computer
for use in other places. The manual, which contaiuns 90 pages, cannot be
included in its entirety in this report, but excerpts containing a summary
of ¢p codes and a BNF definition of the language are included in the appen-
dices. An example of a coded problem sequence (taken from Lesson 4) is also
included.

Briefly, the coding language is a high-level computer language designed
specifically for writing tutorial coputer-assisted instruction. The language
contains over 30 different types of commands, such as problein statement com-
mands, response analysis commands, conditional branching commands, that
enable a curriculum coder to specify problem statemenis, hints, sample
answers, detailed analyses of student responses and contingent actions to

be taken, sequence of problems, and format »f all messages.

27

In order to provide programmed lessons that are highly individualized,
there must be nontrivial routines for analyzing student responses and per-
forming appropriate actions contingent upon the results of such analyses.
Mnalysis routines must be highly differential so that speclific errors may
be isolated and appropriate remedial meterial presented. A simple correct-
incorrect classification of responses is insufficient for an individualized,
tutorial system of teaching. Therc are twelve basic analYéis routines:
EXACT, KW, EQ, MC, TRUE, YES, and their negations NOTEXACT, NOTKW, NOTEQ,
NOTMC, FALSE and NO. The EXACT routine checks the student response for an
exact character-by-character match with a coded text string; KW (key word)
checks for the occurrence of a coded key word; TRUE checks for a response
of TRUE or T; the MC (multiple-choice) routine can be used for multiple-
choice problems in which several choices are correct (a correct response
may be a list of all correct choices, or & list of a minimum number of
correct choices, depending upon how the MC command is used by the coder);
the EQ routine checks for & number within e range of numbers, as specified
in the coding, or checks for equality with a single number, also as specified
in the coding.

The basic analysis routines not only check on the correctness of a
student response, they also check on the form of the student response. TFor
exemple, the EQ routine accepts as a response any number in integer fomm,
decimal form, or sclentific notation; any response not in an acceptable
form, e.g., 8 response of the word "four,"
ERROR IN FORM: PLEASE TYPE A NUMEER. Another routine that differentiates

between correctly formed and incorrectly formed responses, as well as be-

elicits an error-in-form message:

tween correct ard incorrect responses is TRUE, which expects either TRUE
or T as a correct answer, and either FALSE or F as an incorrect answer.
Any other response from the student elicits an error-in-form messege:
PLEASE ANSWER TRUE OR FALSE. Most other analysis routines (YES, MC, etc.)
also contain error-in-form subroutines.

Complex analyses of student responses can be made by using simple

Boolean combinations of the basic snalysis commands. TFor example, the

28

(X
oo

coder may specify a check for a number between 1 and 10, but not equal to
elither 5 or 5.5, by using appropriate combinations of EQ and NOTI%Q commands.
Since most of the asction performed by the analysis routines is internal,
i.e., with no action visible to the student, there are also commands that
cause coded messages to be relayed to the student, eppropriste branching to
take place, etc. These commands, called "action commands,” are all contin-
gent upon the results of the analyses performed by the analysis commands,
i,e., the actions are contingent upon the correctness of the student response.
In addition to the problem coding described above, the system also
allows the coder to specify the number of strands, which of the student con-
trol commands are to be made availablé, and the characters to be used by the
student for giving such commands. As a labor-saving device, gbout 15
"standard messages" can be defined by the coder so that he is not required
to code commonly used messages (such as CORRECT, WRONG, TRY AGAIN) more than
once. '
Because all problems are written in a high-level coding languag:c, any
changes needed in the curriculum for research purposes are easily accomplished.
The teaching system described above is implemented for the PDP-10
computer located at the Computer-based Laboratory, operated by the Institute
for Mathematical Studies in the Social Sciences of Stanford University. The
teaching system conslsts of a coding language, & lesson processor program
that will translate from the coding language into machine-readable code, a
lesson interpreter that will interpret.the translated code at the time a
student'is using the system, and a set of auxiliary operational programs.
The lesson processor is essentially a compiler for the lesson coding language
and -is used to translate coded lessons into a form that can be stored ef-
ficiently for later use by the lesson interxrpreter. The program (the lesson
interpreter), which will be in operation at the time a student takes a
lesson, is the most important and largest program in the teaching system.
It is a time-sharing program that must be extremely efficient both in terms
of core space required and in terms of processing time, since both of these
factors affect the response time for all users of the system. DPast experience
has shown the length of response time as the single, most critical item of

concern in the design of a system for camputer-assisted instruction. A

29

response time of less than 3 seconds is most desirable, and a response time
of more than 10 seconds is totally unacceptable. Response time is affected
both by the efficiency of the processing done by the program and by the total
size of the program. For these reasons, the lesson interpreter is carefully
designed and written in the most efficient available programming language.
The auxiliary operational programs include a student enrollment program and
a daily teachers! report program.

The lesson processor. The lesson processor is & two-stage processor,
the first stage being one of the PDP-10 assemblers. Since the PDP-10 has a

macro-assembler, full advantage has been taken of the macro capabilities;
the processor consists almost entirely of macro definitions of the op codes
used in the coding language, plus a very short load routine, which stores
the processed lessons on a disk file (the processor is essentially a zero-
length program). The coder is also allowed the advantages of a macro
assembler; judicious use of macros can reduce coding time significantly.

The lesson interpreter. The interpreter is written as a reentrant

time-sharing pr@gram using 2K words (36 bit) of core plus 1K for each of
the students coﬁcurrently teking lessons. The program is written in one of
the assembler l?nguages for the PDP-10. Great care has been taken to ensure
fast response time ard economical use of core and disk storage. Routines
for detecting ahd compensating for coding errors have been incorporated.

In a similar fashion, unexpected responses from students are not allowed to
cause errors in the program. This program has been in daily operation for
as long as 10 hours per day since the first of February and is operating
well; response time is excellent and no bugs have been found in the program.
During the month of March, the lesson interpreter handled 1,050 lessons in
BASIC and AID without any failures, a more than adequate demonstration of
the abilities of the program.

As the students interact with the program, their individual history
file is continually updated and written into disk storage. The history file
is 100 words long and contains the student!s name, the number of the course
in which he is enrolled, his current position on each strand (lesson and
problem number), the date, and various other information needed by the

program. These history files supply information for auxiliary programs

30
34

such as the deily report program; & sample dally report is included in the
appendices. The data found in the individual history files, which are con-
tinutally updated as the student progresses through the course, are the only
data collection currently done by the program.

The AID interpreter. The course "Introduction to Progremming: AID"
requires the student to learn to operate two programs that are completely
independent: the lesson interpreter (instructional program) and the AID
interpreter. The AID interpreter is a commercial program supplied and
maintained by Digital Equipment Corporation, the manufacturer of the PDP
computers. No changes have been made to dste in the AID interpreter for
data collection or any other reason, and there is no interrelation between
ATD and the instructional system other than that it is being implemented on

the same computer.

31

()
c

APPENDIX A

Student Manual

INTRODUCTION TO PROGRAMMING: AID
Student Manual -

by

Jamesine E. Priend

April 1970

Copyright 1969 by The Board of Trustees of the
leland Stanford Junior University
All rights resexved.

Institute for Mathematical Studies in the Social Sciences
Stanford University

Stanford, California

9
~J

How to Start the Teaching Program

In this course, you will be taking computer-assisted instruction in
programming. The programming language you will learn is called "AID"
and the lessons will be given by the PDP-10 computer at Stanford.

Follow these instructions to start the teaching program:

1. Turn on the teletype: the switch on the front of the teletype must
be turned to the LINE position.

2. Push the START or BREAK key. (If the teletype doesn't start to hum,
get help.)

3. Type a space. The computer will then type
HT
PIEASE TYPE YOUR NUMEER AND NAME
(Tf this doesn't happen, get help.)

4, Type
1"

(This is your number and "name." Don't forget it.)

Then push the RETURN key. The computer will type
PASSWORD:

(This is your secret passyord. Don't forget it.)
Then push the RETURN key. The computer will type the sign-on
message.

6. Type
L INST
and then push the RETURN key. The computer will type
WHERE TO?

T. Type the RETURN key.

Steps 1, 2 and 3 are used to establish communication with the computer.
Steps 4 and 5 cause you to be "signed on." Steps 6 and 7 start the
teaching program.

If the computer does not respond correctly after each step, get help.

Good luck!

3%

How to Stop

When you are through for the day, follow these instructions:

1, Hold down the CTRL key while you type the letter C.
The computer will print a period.

2. Type the letter K, then push the RETURN key.
The computer will print the sign-off message.

You do not have to turn the teletype off. It will turn off by itself.

39

GLOSSARY

Absolute value
The gbsolute value of & number is the size of that number
disregarding the sign of the number. In AID, exclamation
points are used to denote absolute value:

Exemples:
1-2.7! = 2.7
2.7 = 2.7
See Lesson 29. Also see Operational Symbols.

FRWXXHX¥K

ATD is the computer programming language being taught in this
course. "AID" stands for Algebraic Interpretive Dialogue.

See AID Interpreter. FRRHHRRHRK

ATD commands
Al) ATD commands have a similar form.
Each commend must be on one line and must end with a
RETURN. The form of the commands is as follows:
1. An optional step number, like 2.1 or 37.54 or 16.165.
2. A verb such as TYPE, SET, DELETE.
3. An argument whose form depends upon the preceding verb.
The argument for TYPE is an algebraic expression:
TYPE X + 2/Y
The argument for SET is an equation with a single variable
on the left of the equal sign:
SET ¢ = 72/B + 3.134
Etec.
L. An optional IF clause.
TYPEX+YIFZ<O
SET Q=3 IFP=15
DO PART 3 IF X <27
In addition to the above four parts, certain commands may
contain FOR clauses, or IN FORM clauses.
The ATD commands taught in this course are

TELETE Lessons 5,11

DEMAND Lessons 12,26

DISCARD Lesson 19

Do Lessons 10, 11, 12

FIIE Lesson 19

FORM Lesson 22

LET Lesson 8

FECALL Lesson 19

SET lesson 5

TO Lesson 16

TYPE Lesson 2

USE Lesson 19

See Direct Steps, Indirect. Steps
FRRHHRRHRAR

o 3

ATD functions
ATD functions are the functions already defined by AID.
These functions are
ARG, cos, DP, EXP, FIRST, FP, IP, LOG, MAX, MIN, PROD,
SGN, SIN, SQRT, SUM, TV, XP.
Each of these functions is separately defined in the glossary.

See Lessons 9, 30, 31 and 4.
HHHKARHK

AID Interpreter

The AID Interpreter is the program used when you want AID to
solve a problem for you. After you start AID, you can type
any AID commands. The AID Interpreter interprets your commands
and executes them. To start the AID Interpreter (after you are
signed on), type

Ctxl-C

L ATD
To stop the AID Interpreter, type

Ctrl-C.

FRXKRHKRH K

"AND" is a logical operator used in propositions. All elements
connected by “AND" must be true for the entire expression to be
true. If any one element is false, the expression is false.
Examples: Assume A = TRUE, B = TRUE, C = FALSE

X = A AND B X = TRUE
Z = A AND B AND C Z = FALSE
See Iessons 15 and 43. Also see Proposition.
KRKHHHHH

Answer, How to
To answer a problem in the teaching progrem type your answer,
then type the key labeled "RETURN." For multiple-choice problems,
there may be more than one correct answer; you may type the letters
in any order (with spaces or commas between them, if you wish),
for example,

CBA
A, C, B
B c A
. For TRUE- FALSE guestions, you may type "T" for "TRUE" and "F"
for "FALSE." For YES-NO questions, you may type "Y" for "YES"
and "N" for "NO."

See lesson 1.
FHHe XK

41

Answer, How to Get
To get the correct answer to a problem, hold down the "C'RL" key
while you type the letter "I" (for "Tell me the answer").
H R R K

Arithmetic symbols
See Operational symbols
FRFHKRHRHH

Array
An array is a set of numbers identified by a single letter and from

1 to 10 subscripts (indices). The subscripts may be any integers
from -250 to 250.

Examples:
The following are all members of the same array A:
A(-10,2,5) = 2.789
A(-10,1,0) = =45
A1, 20 59) =0

You can set 211 undefined members of an array (for example X) to
be O with this command:
IET X EE SPARSE.

See Lesson 38. Also see List.
RRAHKHRRK

Asterisk (¥)
Both the teaching program and the AID Interpreter print an asterisk
when ready for a response from the user. The asterisk is also used

as the multiplication symbol (6 * 7 means 6 times 7).
RRERRRRH

Base
(See also Exponent, Exponential function) In an exponential

function the base is the number multiplied by itself as often
as specified.
Example:
X is the base: Xt2 = X*X
The base may be either a number or a variable.

See Legsons 4 and 31.
FRHHAR KK

Boolean expression

See Proposition.
. FRHHH KRN

Branch
To branch means to go from one part of a program to another part

of the program out of sequence. To do this use the DO command
or the TO command.

See DO, TO.
s T

Command

See Control commands, AID commands.
FRRRHKKK

Control commands

CTRL stands for the key marked "CTRL." Whenever you see a command

with CTRL- and a letter, you are supposed to hold down the CTRL

key while you type the letter. ("CTRL" stands for "control.")

CTRL-C. This is the call command. It is used to stop a program
that is running. Use CTRL-C to stop either the teaching program
or the AID Interpreter. If you have written en AID program
that is endlessly looping, type CTRL-C, then type REENTER to
start AID again without restarting the program which was looping.
See lessons 1, 2 and 16.

CTRL-G. This is the "go" command. You use this command only in
the teaching program to go to the lesson or problem you choose.
After you type CTRL-G, the computer asks "WHERE TO?" Then you
specify the lesson or problem you want. See Lesson 1.

CTRL-H. This is the "hop" command. It causes the teaching program
to skip the problem you are working on and go to the next one.
Use this command whenever you want to go on to the next problem
without doing or finishing the current one.

CTRL-O. This is the "Oh, shut up" command. It will stop the
computer from typing. The computer will then wait for a response
from the user.

CTRL-T. This is the "tell" command. If you are using the teaching
program and want the answer to a problem, type CTRL-T and the
computer will print the answer and then go on to the next problem.
See Iesson 1.

CTRL-U., This is the "undo" commend. Tt will cause the computer
to erase the line you have just typed.

?. This is the hint commaend. If you are using the teaching
progrem and want a hint about the problem you are working on,
type a gquestion mark, ?. The computer will then give you a
hint. See Lesson 1.

FHHHH KKK

Conditional definition of functions

A function is said to be defined "conditionally" if the value of
the function dépends upon some condition such as "...IF X > 0"
or "...TF 2 < X AND X < 7." For example, the absolute value
function can be defined in this way:

For x > = 0, Aéx) = x.

For x < 0, A{x) = -x,.
In AID, this conditional function is defined by the command

IET A(X) = (X >=0: x; x<O0: -x)
The form of a conditional definition in AID is

(condition: value; condition: value; ...; condition: value)
‘Generally, the last condition (and last colon) may be omitted,

43

in which case the last value listed is used for "everything else,"
i.e., for all cases not covered by one of the preceéding conditions.
The absolute value function may be written without the last condition:
IET A(X) = (X > =0: X; -X)
KRRKRR KK

Counter
A counter is a variable used for counting. The counter is usually
set to some initial value, say O, and then increased by some amount,
say 1, at regular intervals. One common use of a counter is to
count the number of times a loop is used. One of the commands inside
the loop should change the value of the counter (usually by adding
or subtracting a given number). Somewhere inside the loop there is
an "exit condition," in which the counter is compared with enother
number to decide if AID should repeat the loop or if it should exit
from the loop and go on to some instruction outside the loop. See

Lessons 23, 24, 25, 26 and 36.
EREHRFHAR

Ccos
C0S(x) is the cosine function. AID will give the cosine of the
number you give. X must be given in radians and the absolute value
of ¥ must be less than 100.

Example:
cos(0) = 1
KoKW NN e
CTRL
See Control commands
KR RKHNe R 6

Debug
(See also Trace) To debug & program, you must find and correct all
the errors in it, whether they are logical errors or simply typing
errors. A trace is an effective method for finding precisely where

en error is. See Lesson 19.
KHHHHK KR K

DELETE

Use DELETE to remove a varieble, a specific element in an array,
or an entire arrasy, along with the values belonging to them from
computer storage. You may also DELETE & step, a part, a formula,
or & form. One DELETE command may be used to DELETE several items.
Examples:

DELETE Z

DELIETE A(2)

DELETE FORM 71

DELETE Y, FORMULA B, PART 7

See lessons 5, 8, 10, and 1l,., Also see FILE commands.
R Rt e ¥

DEMAND
DEMAND X causes the computer to stop and wait for the user to “ype
a value. DEMAND can only be used as an indirect command.

Examples:
ATD command: output:
1.3 DEMAND B B = *
7.12 DEMAND M(2,4) M(2,4) = *
4.1 DEMAND P AS "POUNDS" POUNDS = *
See lessons 12 ang 26.
KRKHK KKK
Direct step
An AID commend not preceded by & step number is called a "direct
step." AID interprets and executes a direct step as soon as you

type the RETURN key. You must type a direct step each time you
want it executed. DEMAND and TO may not be used as direct steps.

Examples:
ATD command: output:
TYPE 2%7 2%7 = 14
SET X = -3 no output (stores -3 in location X)
KR HRR KR
DISCARD
See FILE commands. Also see DEIETE.
FHHHRHHHR

The DO command is used to execute an indirect step or part. You
may specify how many times the step or part is executed (if you
don't specify, it will be executed only once). You may also use
a FOR clause and specify a range of values for which the step or
pert is to be executed.
Examples:

DO STEP 10.1.

DO PART 6, 2 TIMES.

DO STEP 8.2 FOR X = 12(2)20.

See Lessons 10, 11, 12, and 18. Also see FOR clause.
FHK R HHHK

DP(x) is the digit part function. This function uses the scientific
notation form of & number and finds the new form of the digit part
of the number you specify.
Examples:
241,37 in scientific notation is 2,4137%10%t2, so
DP(241.37) = 2.4137
.24137 in scientific notation is 2.4137%10%(-1), so
DP(.24137) = 2.4137
The DP function is introduced in Lesson 46.
See Scientific Notation, XP.
FHH KR KRR

8

Erase
To erase a line, hold down the CTRL key while you type the letter
U. To erase one character at a time, type the RUBOUT key once for

each letter you want erased. See DELETE, DISCARD. See Lesson 1.
KR KRXHRK

Errors

In writing AID programs you may mske two kinds of errors:

1. Semantic errors. A semantic error is the kind that occurs
when you leave out a necessary command or use a valid AID
command when you intended to use enother. AID will execute
the commands just as you wrote them. This means that the
only way to detect this kind of error is to see if you are
given a wrong answer.

2. Syntax errors. These are the errors that occur when you type
something which is meaningless to AID. Pecause AID does not
understand, it will stop and print an error message, then
wait for you to do something (such as correcting the mistake
and starting again!).

See Lesson 19. Also see Erase.

FHHHRHHH

Execute
To execuile a program, you make the computer do the commands in
the program. This is done by writing the program and then giving
ATD a cormand to execute the program (for example, DO PART 5).
Indirect ‘steps and parts are stored and you must use a DO command
to cause AID to execute them. Direct steps are always executed
immediately.

FRHHHHHHR

Exit condition

An exit condition is a command within a loop which tells AID
whether +o repeat the Zoop or to quit looping. One kind of exit
condition compares a counter with another number to decide. When
the condition of the comparison is not met, AID exits from the
loop andégoes to the next step. No exit condition is needed if
the loop’' contains a DEMAND command, since you can stop the lcop
at any time by typing only a carriasge return when AID waits for
you to give a value.
Examples: \

1.4 TO STEP 1.25 IF X > 25.

9.34 TO STEP 9.1 IF SQRT(X) < 10.
See Lessons 23, 24, 25, 26 and 36. See Counter.

FRHHHRHRH

EXP
EXP(x) is the exponential function, EtX, where E is Euler's number
(2.71828183).
Example:
EXP(3) = 20.0855369
See Lesson U46.
FH T RRKHK

Exponent .

In an exponential function the exponent tells how many times the
base is multiplied by itself. The exponent may be either a number
or a variable.
Exauples:

3 is the exponent: Xt3

Z is the exponent: 7.4312 7
The AID function EXP(X) is equivalent to 2.71828183%X, so X is
the exponent. A fractional (or decimal) exponent indicates which
root of a number is being calculated. TFor example, the sguare
root of X may be written either

xt(1/2)

or

Xt(.5).
If the exponent is nezative you first do whatever is indicated by
the numerical value of the exponent (find the proper root or
multiply the base by itself the correct number of times). Then
take the reciprocal of the result.
Examples:

41(-3) = /413

10%(-6) = 1/10%6
If the expouent is O, the value of the expression is 1, regardless
of the value of the base.
Examples:

210

5.5%

010 =
See Lessons 4 and 31. See Base, Exponential Function.

KRR F N

I O

1
=1
1

fxponential function
An exponential function is a function in which the variable appears
as an exponent.

Examples:
F(X) = 21X
G(X) = lL.24(3*X)
H(X) = XtX

The AID function EXP(X) is an exponential function which is

equivalent to 2.71828183tX. Also see Base, Exponent.
FRAKEKXRK

10

FILE commands

Programs, formulas, forms, etc., may be filed for later use by
using the AID file commands. The commands

USE FIILE 100

FILE PART 5 AS ITEM 5
will cause PART 3 to be permanently stored as item 5 on disk file
100. The PART may be fetched from the file at a later date by
using the commands

USE FILE 100

RECALL ITEM 5
Ttem numbers can be from 1 to 25.
Examples of file commands:

USE FILE 100

FILE F AS ITEM 6

FILE FORM 70 AS ITEM 10

FILE PART 2 AS ITEM 12
An item is erased from a file by a DISCARD command:

DISCARD ITEM 17
See Storage. BSee Lesson 19. _

FRHHHHH K

FIRST

FOR

FIRST is an AID function that finds the first value in an array
which satisfies the specified proposition.
Example:

FIRST(I = 1(1)30: A(I) > 700)
I is the index of the array A so I = 1(1)30 tells which elements
of the array are to be considered. A(I) > 700 is the proposition
which must be satisfied. The result of the FIRST function will be
the index of the first element in the array A which is greater
than 700. Sec Lesson Lk.

FHHHHHH K

A FOR clause can be used after a DO command. The FOR clause
specifies the values for which the DO command must be executed.
There are two ways to specify the values in a FOR clause:
1, The values can simply be listed:
DO STEP 1.3 FOR X = 1,2,3,10.
Step 1.3 is done one time for each of the four values of x
listed.
2. The values mey be specified by giving the range:
DO STEP 1.3 FOR Y = 3(2)13. .
Step 1.3 will be done for Y = 3, 5, 7, 9, 11, and 13.
3 is called the initial value, 2 is the step size, and 13 is
the final value. (See Range.j
See Lessons 10, 11, and 25.
T S

11

48

FORM

FORM is the command used to tell AID to type an answer in sore form
other than the standard form. To specify the form, first type the
word “FORM," then give it a number, and follow it with a colon. On
the next line type the form you want AID to print your answer in,
including any words you want. Where AID is to fill in the number,
use back arrows to represent digits. Put the decimal in the appro-
priate plaze. Caution: use only one line.
Example:

FORM 73:

THE ANSWER IS <¥++, v+
Then when you want ATD to use your form, use & command like

TYPE X IN FORM 73.

See Lesson 22.
Rk R He e e

FP
FP is the fraction pert function. AID answers with the fraction
part of the number or variable you specify.
Examples:
FP(132.576) = .576
FP(-8.543) = -.543
The FP function is introduced in Lesson 9.
FR KKK K

Function

See AID functions.
, KRR R R RN K

Go

See CTRL-G, WHERE TO?
KoK Y R e e K

Hint
In the teaching program, hints are provided for most problems.
To get & hint, type a gquestion mark, ?. There are usually
several hints with each problem; the first time you type a
guestion mark you will get the first hint, the second question

mark will give you the second hint, etc.
FRFHH KKK

IF cleuse
An IF clause may be added to any AID commend so that the command
will be executed only if the proposition in the IF clause is
satisfied.
Example:
1.1 SET B = 50 IF A > 100.
ATD will set the value of B 2qual to 50 only if A is greater

than 100, See Lesson 15.
R KR KA ¥

Index
An index is a reference number for a list or an array. The index
is the number in parentheses. Since all the members of a list or
an array have the same letter, each member has its own index to
distinguish it from the others.
Example:
L(16) = 10 means the 16th number in the list L is 10.
L is the label for the list.
16 is the index of a particular element.
10 is the value of that element of the list.
he plural of "index" is "indices." An index is also called a

subscript. See lesscn 32.
FHRHHIHKEHK

Indirect step

An indirect step is en AID commind preceded by a step number.
Indirect steps are stored for later use, rather than executec
immediately. When you use a DO command or a TO command, the
step will be executed.
Example:

1.3 TYPE 3*2. .
ATD will not print anything until you give an indirect DO or TO
command or one of these direct commands:

DO PART 1.

or

DO STEP 1.3.
Step numbers must be decimal numbers containing both an integer
portion and a decimal portion; a step number can contain a maximum
of nine significant digits. Some commands may only be used in
indirect steps; those commands are DEMAND and TO. See Lesson 1lO.

Also see Part, Step number.
FRFERRHKRH

Initial value

The term initial value may refer to two different things. It is
the first value given to a counter (see Loops, Exit conditions).
It also refers to the first value of a range of values in a FOR
clause using this form:

initial value (step size) final value
In the command

DO PART 3 FOR X = 6(2)20
the initial value is 6.

See Range.
FRHHH KKK

Input . :

Input commands assign values to the variables in a program. Most

progrems must provide for input. The SET and DEMAND commands are -

used for input. See Lesson 19. |
KR HHHHHHR

Q . 13

50

INST
See Teaching program.
FRH KRN R

IP
IP(X) is the integer part function. AID will give the integer
part of the number or variable you specify.

Examples:
' IP(.723) = 0
IP(72.8) = 72
IP(-6.9) = -6
The IP function is introduced in Lesson 9.
FRRHH R KK
L ATD
See AID Interpreter.
FHRRHH RN
L INST
See Teaching Program
FRHHH K NN

Lesson L

To get a specific lesson using the teachiﬁg‘program, you must
First, sign on (see page 3)
Second, start the teaching program (Type "L INST")
Third, specify the lesson (Type "L5" for Lesson 5, "L36"
for Lesson 36, etc.)

Also see CTRL-G.

FRHHHKR KK
IET
IET is used to define functions and propositions.
Examples:
IET A(W,L) = WXL (formula for area of a rectangle)
IET B=X AND Y (B will be true only if X and Y are both true.)
IET T(A) = SIN(A)/COS(A) (tangent function)
See Lessons 8 and 45.
FRR RN KR
Line number
¢ Sez Step Number, Indirect Step.
FRHHRH R

List
You may use one letter to represent a list of numbers. Each number
in the list must have an index to distinguish it from the other
memnbers of the list.
Exumples: IL(1) = 10 (The first number in list L is 10.)
L(2) = 6 (The second number in list 1L is 6.)
L(3) =29 (The third number in list L is 29.)

Sec Lessons 32 and 33. Alsc see Array.
KHAR A

ERIC .

o1

LOG
10G(X) is the natural logarithm function. LOG(X) gives tha loga-
rithm to the base E of X. E is Euler's number (2.71828183). X
must be greater than 0.
Example:
10G(650) = 6.47697236
The 10G function is introduced in lesson 31.
R R HRH R R

Logical operator
The logical operators in AID are AND and OR. Operations involving
AND are done before operations involving OR. See Lesson 43. Also
see Propositions.
FRHKH KRR

Loop
A loop is a portion of a program that is repeated. The number of
times a loop is executed depends on the counter and on the exit
condition. Loops are first discussed in Lesson 23.
FRHRRHRHR

MAX is the ATD function that finds the largest value in a list.
Example:

MAX(S: 'h: 3: I XTE)
You may also specify the list as a part of a sequence. You must
specify which numbers in the sequence are to be considered and
what the formula for the sequence is.
Examples:

MAX(I = 1,2,3,4: I*3) is the same as MAX(3, 6, 9, 12)

MAX(J = lO(—2$Ot 2%J) is the same as

MAX(2t10, 218, 216, 2t4, 212, 210)

See Iesson 37-

ERXRKXKR¥

MIN is the AID function that finds the smallest value in a sequence.
You must tell AID which nurbers in the sequence are to be considered
and what the formula for the sequence is. For short sequences you
may simply type the list of numbers.
Examples:

MIN(i = 1(1)5:.i*3)

MIN(j = 3,0,-2 213)

MIN(h)81'7:Z) :
See lesson 37. Also see MAX,

KKK RHAHHH ;
. Mistakes
- Bee Errors, see Erase.
: FRERRRHRH:
e - 15

9y
N9

Multiple choice problems
See Ansver.
KRRHEKKRK

NoT
See Propositions.
FRHHRHHH

Numbers
Numbers may be expressed in either decimal form (2348.25) or in
scientific notation (2.34825%10%3). Numbers are limited to 9
significant digits. See Lesson 4.
KR KR R e o %

Number line
The number line is a line divided into equal parts. One dividing
point is labeled © and all the dividing points to the right are
labeled consecutively 1,2,3,... . All the dividing points to the
left of O are labeled -1,-2,-3,..., consecutively.
Example:

-2 -1 0

Operational symbols
The AID symbols for arithmetic operation are these:
! ! absolute value
exponentiation
multiplication
division
addition
- subtraction
The order of priority of the operations is this:
1 1
0
* / evaluated from left to right
+ - evaluated from left to right
See lessons 2, 3, 4 and 29.

+ Nk

FRKHHRNK

OR
OR is a logical operator used in propositions. If any element
connected by OR is true, then the entire expression is true,
otherwise the expression is false.
Examples: assume A = TRUE, B = FALSE, C = FALSE
X=BORC X = FALSE
Z=AORBORC - Z = TRUE
See lessons 15 and 43. Also .ee Propositions.
KRERRXHRR

16 59

Output
An output command causes AID to print the results of pro-:essing.
Most programs should provide for output. The only AID output

command is TYPE. See Lessons 2 and 19.
RN R

PART .
A PART consists of all the indirect steps with the same value in
the integer portion. For example, these steps all belong to PART 2.

2.001 SET X = 1
2.99 SET X=X+ 1
2.4 TYPE X

See lesson 1l.
HA KKK N Ko

PROD
PROD multiplies all the specified numbers in & sequence together.
You must tell AID which members of the sequence are to be used
and what the formula for the sequence is. For short sequences
you may simply type the list of numbers.
Examples:
PROD(j = 1:2:3:)"': J + 3)
...this is equivalent to (1+3)%(2+3)%(3+3)%(4+3)
PROD(1i = 5(5)30: j/4)
...this is equivalent to (5/4)%(10/4)%(15/4)*(20/4)*(25/4)%(30/%)
PROD(2,4,2,.8,-2)
...this is equivalent to 2¥4*2Z% .8%(-2)
See Iesson 37. Also see SUM, MAX, MIN.
KRR R

Proposition

A proposition is a wathematical sentence made up of arithmetic or
logical statements that use the relational operators (>,=,etc.),
NOT, and the logical operators (AND, OR). The value of a proposition
is either true or false. The order of execution within a proposition
is

1. evaluate expressions

2. relational operations

3. NOT

4. AND

5. OR
Examples: assume X = TRUE, Y = FALSE, Z = TRUE

B=XANDY B is FALSE

A=XAND Y OR 2 A is TRUE

C=(2<3)OR(7>10) C¢Cis TRUE
Propositions are discussed in Lessons 43-45. See TV.

FRHHHH A

17

Range
In a number of different AID commands a list of numbers can be
speci?iid by defining the range of the numbers in this way:
iys)f
where i = the initial value, s = the step size, and f = the final
value.
Examples:
DO PART 7 FOR X = 15(5)40
(The initial value is 15, the step size is 5, and the
final value is 40, so the list of numbers is 15, 20,
25, 30, 35, 40.)
TYPE MAX(N = 1(7)29: N/3)
(The initial value is 1, the step size is 7, and the
final value is 29, so the list of values for N is 1,
8, 15, 22, 29.)
A range specification may also be used with MIN, SUM, PROD,

and FIRST.
HRHHK AR
RECALL
See FILE Commaends.
FHH KR KRR
Reciprocal
The reciprocal of a number, say A, is found by dividing 1 by the
number A.
Examples:
number reciprocal
3 /3
2.5 /2.5 = .h
.5 /.5 =2
1/3 1/(1/3) = 3
FHH KR RN
Recursion

Recursion is a way of defining a function on the integers by (1)
specifying the value of the function for the integer 1, and (2)
defining the value of the function for integers greater than 1
_in terms of the value of the function for smaller integers. For
example, the factorial function F(X) may be defined by these two
equations:
F(1) =1
(this specifies the value of the function for the integer 1.)
F(X) = X*F(X-1) for X > 1
(this defines the value of the function for X in terms of
integers less thza X.)
In AID, the above two equations are combined in & single conditional
expression, as follows:
F(X) = (¥=1: 1; X > 1: X*F(X-1))
FHRRRHHH

Q 18

59

REENTER
REENTER is & command that tells AID to start running you-~ program
again where it left off when you inter:upted by using CTRI-C. AID

does the next step and then stops and tells you where it is so you
can decide what tc do next. See Ctrl-C.
HHHHH KK

Relational symbols
These are the relational symbols used in AID:
equal
not equal
less than
greater than
less than or equal to
greater than or equal to

The relatlonal symbols are discussed in lesson 15.
FRHRKKRKKRKR

Vv Asen

Scientific notation
Scientific notation is used to write very large and very small

numbers.
scientific notation
30000 = 3.0 * 10tk
4560000 = 4.56 * 10t6
0.0025 = 2.5 % 10t(-3)
0.00000071 = 7.1 % 104(-7)
See lesson 4.
HRERRRH K
Semantic errors
See Errors.
HRHHRRH K
SET
The SET command assigns values to variables.
Examples:
SET X = 5.25
SET 2 = A¥B (A and B must already have values.)
The SET command is introduced in Lesson 5.
HRERRRH K
SCN
SGN(X) is the sign function. It gives 1 if X is a positive number,
0 if X is 0, and ~1 if X is & negative number.
Examples:
SGN(25) = 1
SGN(0) =0

SGN(-762.4) = -
.The SGN function is introduced in ILesson 9.
HRHEHRH KR

ERIC X C s

Sign-on
See Page 3 of this manual.
R R RN RN

Sign-off
To sign off use these commands:
CTRL-C (to stop the progrem)
K (to sign off)
KHHHHRHHK

Significant digits
The significant digits of a number are the digits beginning with
the first non-zero digit on the left and ending with the last
non-zero digit on the right.

Examples:
number significant digits
0.2030 203
100 1
.00976 976
In ATD, numbers are limited to 9 significant digits.
X RHHHHRRH
SIN
SIN(X) is the sine function. AID finds the sine of X. X must
be expressed in radians. The absolute value of X must be less
than 100.
Example:
SIN(O) = O
The SIN function is introduced in lesson 30.
KWW HHHHK
SQRT
SQRT(X) is the square root function. AID finds the positive square
root of X. X cannot be negative.
Examples:
SQRT(9) = 3
SQRT(60 + 40) = 10
The SQRT function is introduced in Lesscn 9.
FR KRR HHK
Start
To start using the computer, you must sign on (see Page 3).
To start the AID Interpreter type:
L ATD
To start the teaching program type:
L INST
See lessons 1 and 2. Also see AID Interpreter, Teaching Program.
FRHHHHHH
Q _ 20

15
on
3

STEP
Every AID command is called a "step." There are indirect steps,
which are saved for later execution, and direct steps, which are
executed immediately.

See Lesson 10. See AID Commands, Indirect Steps.
HHRRHRHARR

Step number

Any AID command mey be preceded by a step number to make the command
into an indirect step (which is stored, rather than executed immed-
iately). Step numbers must be decimal numbers containing both an
integer portion and a decimal portion; a ster number may contain a
maximum of nine significant digits. For example, the following are
all valid step numbers:

1.2

1.3

10.678

10.6781233

See Indirect Step.
KR HHH KN

Stop
To stop either the AID Interpreter or the teaching program, type
CTRL-C (See Control commands). To stop for the day, you mist

sign off: Type "K" after you have typed CTRL-C.
KRRREKKRK

Storage
Storage locations are in the short-term memory (core) of the
computer. AID gives each variable, each member of & list, etc.,
its own storage location. If you change the value of a variable,
AID finds its storage location, takes out the old value and puts
in the new value. The SET command i< used to store numbers and
lists of numbers. The LET command is used to store function
definitions and definitions of propositions. Indirect steps (steps
with a preceding step number) are automatically stored. Anything
in short-term memory mey be changed simplyr by redefining it, or
it may be erased by using & DELETE command. For long-term storage,
see FILE Commands.

FRHHHHHH
Subscript
See Index.
FHe e N e
21

58

SUM
SUM is the AID function that adds the specified members of a sequence.
You must tell AID which members of the sequence to consider and what
the formula for the sequence is. For short sequences you may simply
list the numbers.
Examples:
SUM(j = 1,2,3,4: j*3)
...equivalent to (1*3) + (2%3) + (3%3) + (L4*3)
SUM(i = 1(3)25: it2)
...equivalent to 112 + 412 + 742 + ... + 2512
SUM(10,X,Z,-42.1)
...equivalent to 10 + X + Z + (-42.1)
See Iesson 37. Also see PROD, MAX, MIN.
K HHH KKK

Syntax errors

See Errors
Kok e KK N

Teaching program
The teaching progrem is the one that teaches you how to write
programs using the AID language. After you are signed on, you
mey start the teaching program by typing:

L INST
For complete instructions, see page 3 of this manual.
FRRHH KA
Tell
See CTRL-T.
FRHHRHHRHK

3
O

TO is a branching command used to tell AID to go to a step or part
out of sequence. TO must be used indirectly only.
Examples:

2.75 TO STEP 2.3.

17.4 TO PART 15.

TO is introduced in Lesson 16.
FHERRNRRH

Trace
A trace is a table used to find errors which are difficult to spot
otherwise. To make a trace, list the steps in a program in the
order they are done. For each step also list the values of the
variables after the step is done. Sometimes output is listed for

each step. Traces are discussed in lesson 17.
FKRRHHRHN

22

59

Trigonometric functions
The only trigonometric functions in AID are SIN(X) and COS(X).
You must define your own functions if you want to use any other
trigonometric functions. For example, the tangent function can
be defined by
IET T(X) = SIN(X)/C0S(X)
See SIN, COS,
XRHXHH RN

Truth tables

See Iesson 43.
FRHHRRHR

TV(X) is the truth value function, where X is a proposition. If
the proposition is true, TV(X) will be 1. If the proposition is
false, TV(X) will be 0.

Examples: assume A = -5 <3 and B= (2 <0) OR {2 < 1)

TV(A) = 1
V(B) = 0
The TV function is discussed in Lesson 44.
KRR R RN RN
TYPE
The TYPE command causes AID to print out the specified information.
command : output:
TYPE 2%3 2%x3 = 6
TYPE < (a blank line)
TYPE "VALUES" VALUES
TYPE F F(X): 3%X12
TYPE X X = 3.47

TYPE STEP 17.2 17.2 SET X = 2/Y.
One TYPE command may be used for several things:
TYPE FORMULA F, SQRT(12),3 + 2.7.
See Lesson 2.
FHHHKKK K

USE
See FILE Commands.
KRR RKRH

Variable
In ATD, variables are used +to designate storage locations for
numbers, formulas, lists of numbers, arrays, etc. AID variables
are the single letters A, B, C, ..., Z,

Examples:
SET A = 2 (A is a number)
IET F(X) = Xt2 + 3 (F is a formula)
SET Aée) = 7.05 (A is a list)
SET B(3,7) = 21.76 éB is an array)
SET M = A AND B M is a proposition)
X W IR W NN
23

€0

WHERE TO?

In the teaching program "WHERE TO?" is typed by the computer to
indicate that the user can cpecify a lesson or problem to do next.

To continue your lessons, type the RETURN key.

To start Lesson 19, type "L1g"

To do Lesson L5, Problem 6, type "L45-6"

To get Summary of Lesson 21, type "S21"

To get a Review of Lesson 26, type "R26", etc.
See Iesson 1.

KRR K

XP(X) is the exponent part function. This function tekes the
number you glve and finds the value of the exponent when your
number is expressed in scientifie notation.
Examples:
24137 in scientific notation is 2.4137%10t4 so
xP(24137) = 4
.0024137 in scientific notation is 2.4137%10%(-3) so
XP(.0024137) = -3
See Iesson 46.
FRHHNH KK

24
61

APPENDIX B

ATD Documentation

62

STANFORL ARTIFICIAL INTELLIGENCE LABORATCRY October 12, 1047
OPERATING NOTE NO. 32

AID FOR ON-LINE COMPUTATION

adapted Tfrom RAND documentation
by S. Russell and R. Gruen

1. INTRODUCTION

AID+ is an on-line, time-shared computing service that is designed
to appear to each user as a personal "computing aide," interacting with
the user and responding to instructions couched in a simple ianguage and
transmitted over communication lines from the userts Teletype.

This memorendum describes the programming language for requesting
computations of ATD. Prior experience with other programming languages
(e.g., FORTRAN) is neither necessary nor applicable; indeed, reliance
upon such experience mey be misleading.

The section below is an overview and should be read carefull-.
Section 3 is a fairly complete description of the language, designed as
a reference. The examples, however, should be studied; they are positive
rather than negative, showing what is permitted rather than what is not
allowed.

2. OVERVIEW

Users request actions of AID by typing single-line commands called
steps. A numerical label prefixed to the step is an implied command to
ATD to retain the step as part of a stored program. AID files away
labelled steps in sequence according to the numeric value of the label
or step number. The step number, therefore, determines whether an addi-
tion, insertion, or deletion is reguired.

Steps are organized intc parts according to the integer parts of
the step numbers. Steps and parts are units that may be introduced,
edited, typed out, or filed in long-term storage. In addition, they
are natural stored-program units for specifylng, in e hierarchial manner,
procedures to be carried out by AID.

*AID - Algebraic Interpretive Dislog is derived from JOSS, a system
developed by The RAND Corporation. JOSS is a trademark and service
mark of the RAND Corporation for its computer program and services
using ihet program. We are indebted to The RAND Corporation fcr the
use of the prugram and its documentation.

25

Lowpt]
Q2

Decimal and logical values may be assigned to any of the 26 letters
admitied as identifiers. Val'es may be organized into vectors and arrays
by using indexed letters, and the letters themselves may be used to refer
to arrays for purposes of deletion, typing, filling in long-term storage,
and as actual parameters of formulas (see below).

In =ddition to values, arbitrarily complex expressions for values and
letters may be assigned to a letter, which may then be used as an abbrevi-
ation for the expression; expressions so assigned atré called formulas.
Formulas involving formal parameters (identified by letters) may also be
assigned to a letter. The letter and expressions for actual parameters,
in functional notation, may then be used as an abbreviation for the formula
witihh the actual parameters substituted for the formal ones. The letter
itself may be used to refer to the formula for purposes of deletion, typing,
filing, and as an actual parameter of a formula.

Programs for evaluating tne sum, product, largest, and smallest of a
set of decimel values--and for evaluating the first in a range of decimal
values for which a condition holds--can be expressed succinctly and used
as expressions for values:

SUM(I = 2(1)N : A(I))
PROD(X, Y, Z/2)
MAX(T = 2(2)N : A(T)*B(I))
MIN(X, Y/3, Z*2)
FIRST(I = X(1)Z : P(I))

Either of the two notational styles may be used, except for FIRST which
finds the first I for which P(I) is TRUE. Programs for determining the
conjunction or disjunction of a set of logical values can also be expressed
in either style, and used as expressions for logical values.

Short programs for choosing expressions differentially on the basis of
a set of conditions can also be expressed succinctly and used as expressions,
The notation chosen abbreviates phrases such as:
if x = y use x + y, if x > y use x, otherwise use y
by (X=Y:X+Y;X>Y:X;7)
Such iterative functions and conditional expressions, together with formulas,

lead to powerful, direct expressions for complex procedures, particularly
recursive ones.

AID represents decimal numbers in scientific notation: nine digits of
significance and a base-ten scale factor in the range -99 through +99.
Aadition, subtraction, multiplication, division, and square root are car-
ried out to give true results rounded to nine significant digits; zerces
are substituted on underflow while overflow yields an error messaege. In

26
6 4

other elementary functions, care is taken tc provide i1easonable significance
and continuity of spproximation, to factor out error conditions, and to
hit certein "magic" values on the nose.

The six nunerical relastions together with AND, OR, NOT, and a set of
elementary logical functions may be used to express logical values and
conditions (which may be attached to any step).

A single, general rule governs the formation and use of expressions
for values: with the exception of step labels, which must be decimal
numerals, wherever a decimal (logical) numeral is allowed in a command,
an arbitrarily complex expression for a decimal (logical) value mey be
used.

AID types answers one-per-lir>, identifying answers by the expression
used in the step calling for the output; in the event of conditional ex-
pressions, AID uses only the chosen sub-expression for identification.
Decimal points and equal signs are lined up, and fixed-point notation is
used whenever possible. For more formal output, the user can create full-
line FOBMS to specify literal intormation and blank fields to be filled
in with answers. A string of up arrows with an optional decimal point is
used for fixed-point fields; a string of periods specifies a tabular form
of a scientific notation (floating point).

Users can request AID to file, in long-term storage, identifiable
units and collections of units--steps, parts, rorms, formulas, and values.
Users may then request ATD to recall such filed items, discard them from
the files, or type out a list of items in a file.

Users start AID off on the task of carrying out a stored program by
directing AID to DO a step or part--iteratively (for a raunge-of-values)
or a specified number of times, if desired. AID cancels all outstanding
tasks before beginning a direct (i.e., initiated from the console) task,
begins the interpretation of a part at the first step of the part, and
then interprets each step in sequence. Each subsequent indirect (i.e.,
initiated by a step of a stored program) DO causes AID to retesin the
status of the current task, pause to carry out the new task, and then
return to continue the suspended one. If the user wishes AID to belave
in the same manner for a directly initisted task, the DO command must be
enclosed in parentheses.

AID modifies this general behavior whenever it encounters: a) an
error; b) a branching command; c) a stopping command; d) a command for
terminating a task or a portion of a task; e) an interrupt-signal from
the user. The deep and involved hierarchy of tasks and formulas that
can occur (recursion is allowed) demands that AID's status be perfectly
¢lear each time control is transferred to the user, for any reason. 1In
addition to error messages, interrupt messages, and stopping messages,
AID transmits status messages on completion of parenthetical tasks to
distinguish this state from the state of having finished a direct, non-
parenthetlcal task. The user is able to proceed in every situation, in

Q 27

the event of errors, he can take corrective action, and then direct AID
to continue with a GO command.

3. DESCRIPTION

EDITING INPUT LINES

ATD indicates that it is ready to receive input by typing out an
asterisk (*¥). Characters may be deleted sequentially backwarc by striking
the RUBOUT key. Typing asterisk (%) at the begiraing or end of an input
line cancels the line.

RULES OF FORM

One command per line, one line per command.

Commends begin with a verb and end with a period.

Words, variables, and numerals may neither abut each other nor contain
embedded spaces; spaces may not appear between an identifier (of an array,
a formula or a function) and ics associated grouped argument(s); otherwise,
spaces may be used freely.

Asterisk typed Step
by AID number Verb Arguments Modifiers

[—> *1,23 TYFE X, Y, Z+3 IN FORM 3 IF X+Y > 14.
*1.4 DO PART 6 FOR X = 1(14)141, 1800.

DIRECT COMMAND: Step number omitted; command is executed immediately.

STORED COMMAND: Step number present; command is stored in order of step

number.

STEP: A stored command; step number is limited to 9-digit
aumbers > 1.

PART: A group of steps whose step numbers have the same in-
tegral part.

FORM: A pictorial specification of literal information and

fields to be filled with values, for formal output.
Fields are denoted by strings of left arrows (with
optional point) or strings of dots (for a talbular
form of scientific representation).

*FORM Tt
¥ = <+ <+ AMPS. V= 1vieeoess. VOLTS

8
2 6 6

NUMEERS : Range: i—_lO-99 0 9.99999999- 107
Precision: O signiricant digits

SYMBOLS: Single letter identifiers. May idencify decimal values,
logical values (true, false), formulus, and arrays of
values.

ARRAYS: Up to 10 indices having integer values in the range

[-250,250].
TECIMAL OPENATIONS:
+ = %/ ¥% ¢

Single asterisk for multiplication, double asterisk or
up arrow (%) for exponentiation.

RELATIONS : < > <= > = #

Extended relations (e.g., a < b < c) permitted. DNumber
sign for not equal.

LOGICAL OPERATIONS:

AND OR NOT
GROUPERS: () [1 (used interchangeably in pairs)
3+ 1/2 + /b5 = 3+ (V2 + (1/4:5))
~213¢h-5 = (-(2%)1)-5
D% I%kY = (23)h

A OR B AND NOT C OR D

a or (b and not c) or 4

BASIC FUNCTIONS NUMEER DISSECTION FUNCTION

3QRT(X) square root, x > 0 SGN(X) -0,0,+1 for x < 0,x = 0, x >0
SIN(X) IP(X) integer part ip(3.2) =3

Ix in radiansl < 100
cos(x) FP(X) fraction part fp(3.2) = .2
LoG(X) natural log, x > 0 DP(X) digit part dp(100.2) = 1.002
EXP(X) e* XP(X) exponent part xp(100.2) = 2
ARG(X,Y) angle of point x,y in Ix! absolute value for decimal values

radians, arg(0,0)=0. |true|= 1, |false|=0

29

v

X,V

arg(x,y)

SPECIAL FUNCTIONS

SUM[I=A(R)C:F(I)] SUM(X,Y,2+10)
PROD[I:=A(B)C:F(I)] PROD(A+B, C+D,E+F) -
MIN[I:.%’;(B)C:F(I)] MIN(A,B,C,D)
MAX[T=A(B) C:F(I)] MAX(B,1,X+Y)
FIRST[I=A{B)C:P(I)] gives first I for which P(I) is true
TV(P) = 0,1 , IF P = FALSE, TRUE

= FAISE, TRUE IFP=0,P£O0
CONJ[I=A(B)C:P(I)] CONJ(X=1, Y > 3,P)
DISJ[I=A(B)C:P(TI)] DISJ(A=B=C,A > Y > 10)

CONDITIONAL EXPRESSIONS

(Pl:El: P,:E,: E3)
where: Pi are expressions for logical values,
means : Ir Pl is true use El’ if P2 is true use Ez, otherwise use E3.
¥ET X = (B <Y<=5:0;Y<1F: 2%¥2 ; 5).
*¥IET P(X) ='[X=@4: 1 ; PROD({ 1 = 1(1)X : 1) 1.
AID VERBS
SET- Assigns value. SET and final period may be omitted on direct
commands .
*SET X = 3.
*SET A(5,X) = Y+3%¥X-X*2,

30 6 3

DELETE

DEMAND

TO

STOP

GO

DONT
QUIT

CANCEL

Defines a formula of 9 or fewer parameters.

*¥LET P(X,Y) = X¥*2+10%X-6%Y,

*LET H = (B-A)/2.
*LET D(F,X) = [F(X+D)-F(X) 1/D.
*IET Q(R) = [R=@: 1 ; FP(R)=0: R*Q(R-1)]

Brases values, parts, steps, forms, furmulas.

*DELETE A, PART 3, ALL FORMS.
*DELETE ALL VALUES, ALL FORMULAS.

Types quoted text or values, blank lirus (*), parts, forms, etc.

*TYPE "THE QUICK BROWN FCX."
*TYPE X+3, D(SIN,8), <, ALL STEPS.

Requests an input value from user. Executing:
1.4 DEMAND A(3,I+18).

with T = 59 causes AID to respond with:
A(3,69) =*

The desired value for A(3,69) may then be typed, followed by
a carriesge return.

Executes or "does" part or step. FOR clause gives range of
values. Returns to user if direct, to next step if indirect.

*¥DO PART 6 FOR X = .1, 3(2)18, 1@@*A+2%B.

Sends AID to indicated part or step.

*¥1.3 TO STEP 3.5.

Interrupts program. Console control returns to user.

Restarts program after interrupt, error message, or STOP
command .

Signals completion of DO for current FOR value.
Signals completion of DO for all FOR values. - -

Signals completion of all DO's.

31

i) 69

(10)

(CANCEL)
LINE

FORM

USE
PIIE
RECALL

DISCARD

AID MODIFIERS

IF

FOR

TIMES

Executes part or step without disturbing inter-upted
calculation.

*(DO PART 3.)

Signals completion of last (DO).

Types a blank line.

After form number, colon, and carriage-return pauses for
user tn enter format for output. Fields are strings of

left ar-ows or dots.

*FORM 3:

¥ = o Y o e =T = eiieense
User file in dictionary.

*USE FILE 185 (DTAT).

Stores an IfEM in the files.

*FILE PART 3, A, Z, AS ITEM 7 (CODE).
Retrieves an ITEM from files.

*RECALL ITEM 7 (COIDE).

Erases a filed ITEM.

*¥DISCARD TITEM 3 (F00).

Precedes a logical expression conditioning any command.

¥TYPE X IF § <= X< 5.
#*SET Y = 3 IF X < = 18 AND X*Y#14.

Used on DO cnly. PART or STEP is executed'repeatedly for
specified set of values.

%DO PART 3 FOR X = 1(1)14(14)108, 1409.
*DO STEP 1.2 FOR X = .41, .43, .1(A)B.

Used on DO only. Causes repeated execution of PART or STEP.

*DO PART L4, 43 TIMES.
*DO STEP 7.3, N+1 TIMES.

32
70

IN FORM Modifies TYPE only. Causes values to be typed in fields
of specified FORM.

*TYPE X, Y, z¥2 IN FORM 3.

ATD NOUNS

TIME Gives 2L-hour time.
*TYPE TIME,

SPARSE Declares undefined array elements to have zero values; they
require no storage.
*1ET A BE SPARSE.

$ The current line nuuber. Maximum is 5h.

EXAMPIE OF A COMPLETE AID TYFEOUT
*TYPE ALL.

1.1 LINE.
1.13 TYPE FORM 2.
1.15 DO PART 2 FOR B = .1(.1)k.

2.95 SET A = - B.
2.1 LINE IF FP($/5) =
2.6 TYPE B, EXP(B), LOG(EXP(B)), C*I(F) IN FORM 1.

tzf

ORM 1:

1«—.«—....... 1-4—.4-4«—1—.1-1—4-4—
TORM 2:
X EXP(X) LoC PROB

I(F): H/2*SUM(T=1y1)38:SUM[J=1(1)2:F(¥(I,J))])
F(X): EXP(-X#%2/2)
H: (B-A)/38
Y(I,T): A+H/2%%[T(J)+2%*I-1]

c = .398942281
1) = 577358268
7(2) = -.577358268

33
71

APPENDIX C

Outline of AID Lessons

2

OUTLINE

Computer-Assisted Instruction in Programming: AID

Iesson 1. How to auswer. How to erase. Control commands.

Ilesson 2. Signing on and off AID. The TYPE command. Arithmetic
operators: + - ¥ / . Decimal numbers.

lesson 3. Using AID for arithmetiec. Use of parentheses. Order of
arithmetic operations.

Lesson k4. The operator t for exponentietion. Order of operations.
Scientific notation.

Lesson 5. Variables. The SET command. Re-defining variables. The
IEIETE commend used to delete varisbles. Multiple types command.

Lesson 6. Self-test.
Lesson 7T Review.

Lesson 8. The IET command (using function notation). Distinction
between LET and SET. Distinction between use of a definea
function and display of the formula for a function. Re-
defining and deleting functions.

Lesson 9. Some standard ATD functions: IP(x), F&(x), SGN(x), SQRT(x).

lesson 10. Indirect steps.
DO STEP ...
DO STEP +... FOR
Re-defining steps and deléting steps.
TYPE STEP

lesson 1ll. Parts,
DO PART
DO PART FOR
Deleting parts.
TYPE PART.

Lesson 12. The DEMAND command.
D0 PART ..., ... TIMES.
Termination by refusal to answer a DEMAND commend.

Lesson 13. Self-test.-

Iesson 14, Review,

73

Lesson 15. Relations between numbers.
Relational symbols: < > <= >= = #
Number line.
The IF clause.

Introduction of "and"

and "or." Type "...."
Lesson 16. Branching. The TO command.
TO STEP ...
TO PART ...
Ilesson 17. Traces.
lesson 18. The indirect use of DO. Use of Ctrl-C, Reenter.
Lesson 19. How to write and debug a program. How to store a program.
Lesson 20. Self-test.
Lesson 21. Review.
Lesson 22. The FORM statement.
lesson 23. Loops. x = x+l.
Iesson 24. Loops with variable bounds.
Lesson 25. Loops ccmpared with FOR clauses.
Iesson 26. Loops with a DEMAND command.
Lesson 27. Self-test.
Lesson‘28. Review.
Lesson 29. Absolute value.
lesson 30. Trigonometric functions: SIN(x), COS(x).
Iesson 31. EXP(x), LOG(x).
Ilescon 32. Lists.
Iesson 33. Using loops with lists of numbers.
lesson 34. Self-test.

Iesson 35. Review.

Lesson 36. More on loops. Decrementing counters. Formulas for exit
’ condition.

35.

74

Ilesson 37. Iterative functions: SUM, PROD, MA&X, MIN.

Lessun 38. Arrays.
IET S BE SPARSE.

Lesson 39. Conditional definition of functions.
Lesson 40. Recursion.

lesson 41. Selr-test.

Lesson 42. Review.

Lesson 43. AND, OR and NOT.
Truth tables.

Lesson 4L, TV(x). The function FIRST.
Lesson 45. ILET used to define propositions.
Lesson 46. More stendard AID functions.
Lesson 47. More about lists and arrays.
Lesson 48. Self-test.

Lesson 49. Review.

36

70

APPENDIX D

Excerpts from the Coders' Manual

76

INSTRUCT

Coders! Manual

(excerpts)

by

Jamesine E. Friend

Copyright 1969 by the Board of Trustees of the
Leland Stanford Jr. University

37
77

K. Summary of Op Codes

Note: If an op code has more than 1 argument, separate the argunents by

commas .
No. of Kind of

Op Code Arguments Argument Comments

LESSCON 2 1. Strand identi- Pseudo op code, Marks

fier (1 to 6 veginning of a lesson.
letters)
2. lLesson numnber

EOL none Pseudo op code. Marks end
of lesson.

PROB 1 text string Displays problem number and
problem text. Pauses for
student response.

QUES 1 text string Displays problem text. Pauses
for student response.

SPROB 1 text string Displays problem text. Pauses
for student response.

TELL 1 text string Displays text of correct
answer, when requested ky
student.

Branch to next problem.
Default routine causes breanch
to pause student response.

HINT 1 text string Displays text for hint when
requested by student. Pause
for student response.

EXACT 1 text string Analyzes student response for
exact match. Sets SCORE,

MC 1 text string Analyzes response . multiple-

containing list choice problems. Sets SCORE
of letters to 1 if completely correct,

-1 if completely wrong,
-2 if partislly wrong,

-3 if partially correct.
Checks form of response.

38

78

EQ

!_l

text string
containing:

Analyzes respcnse for equality
with coded number, within tol-

"tolerance

Kw 1 text string Analyzes response for existence
of coded text string. Sets
8CORE.

NO 0 Analyzes response for "no"
or "n". Sets SCORE. Checks
form of response.

YES 0 Similar to NO.

TRUE 0 Checks for "true" or "t".
Sets SCORE. Checks form of
response.

FALSE 0 Similer to TRUE.

LIST ¥*unde fined¥*

SET *undefined*

NOTEXACT

. Similar to op codes
. described above, with
. negation of SCORE.
NOTXW
CA 1 optional text Executes only 1f SCORE > 0.
string Displays message. Branch to
next problem.
Cl 1 optional text Executes only if SCORE = 1.
' string As for CA.

ca 1 optional text Executes only if SCORE = 2.

string As for CA.

C3 1 optional text Executes only if SCORE = 3.

string As for CA.

WA 1l optional text Executes only if SCORE < O.

string Branch to pause for student

1. number
2. optional
number, giving

39

erance specified ty second
number. Sets SCORE. Checks
form of response.

response,

79

Wl 1 optional text Executes only if SCORE = -1.
string As for WA.

w2 1 optional text Executes culy if SCORE = -2.
string As for WA.

W3 1 optional text Executes only if SCORE = -3.
string As for WA.

BRCA L 1. strand identi- Executes only i1f SCORE > O.
fier. Displays message. Branch to
2. lesson number specified problem.
3. problem number
4, optionel text
string

BRWA L 1, strand identi- Executes only 1f SCORE < O.
fier Displays message. Branch to
2. lesson number specified problem.
3. problem number
4. optional text
string

WS ' 1 optional text Executes only if SCORE < O,
string Displays message. Branch to

next problem.

L. INF Definition of Coding Language
<strand> ::= <lesson> EOL<CR><btrand>l<émpty>
<lesson> ::= <1esson><prob>|<1esson identifier><ecr>

<prob> ::=<PROB command><non-PROB commands>|
: <SPROB command><non-PROB commands>l
<QUES command><non-PROB commands>

<non-PROB commands> ::= <HINT series><non-PROB commands>[

‘ <TELL command><non-PROB commands>|
<analysis command><non-PROB commands>]
<action command><non-PRCB commands>|
<empty>

<HINT series> ::= <HINT command>HINT series>|<bmpty>
<ana.lysis command> ::= <EXACT command>[
' <MC command>

<EQ command>
<KW command>

4o

(&)
>

<NO command>|

<YES comr.1and>[
<TRUE command>|
<FALSE command>|
<NOTEXACT command>|

<NOTKW command>

<action comnund> ::= <CA command>
<Cl command>
<C2 command>
<C3 command>
<WA command>
<W1l command>
<W2 command>
<W3 command>
<BRCA command>
<BRWA command>
<WS command>

Problem Statement {ommands:

<PRCB command> ::= PROB <space><text string><CR>
<SPROB command> ::= SPROB <space><text string>CR>
<QUES cormand> ::= QUES <space><text string><CR>
<HINT command> ::= HINT <spece><text string><CR-
<IELL command> ::= TELL <space><text string><CR>

Analysis Commands :

<EXACT command> ::= EXACT <space><text string>CR>

<MC command> ::= MC <space><left superquote><letter list>
<right superguote><CR>

<letter list> ::= <letter><comma>letter list>
<letter><space>letter list>
<letter>

<EQ command> ::= EQ <space><left superquote><decimal number>
<right superquote><03>]
EQ <space>left superquote><decimal number>
<decimal number><right superquote><CR>

41

81

<KW command> ::= KW <space><text string><CR>
<NO command> ::= NO <CR>

<YES commend> ::= YES <CR>

<TRUE command> ::= TRUE <CR>

<FALSE command> ;:= FALSE <CR>

<NOTEXACT command>
. Similar to EXACT...EQ commands

<NOTEQ command>

Action Commands:

<CA command> ::= CA <space><text string><CR>|CA <CR>

<Cl command> ::= Cl <space><text string><CR>,Cl <CR>

<C2 commend> C2 <space><text string><CR>|02 <CR>

<C3 command> C3 <space><text string><CR>fC3 <CR>

<WA command> ::

WA <space><text string><CR>|WA <CR>

<Wl command> ::

W1 <space><text string><CR>|Wl <CR>

<W2 commend> ::= W2 <space><text string><CR>|W2 <CR>

<W3 commard> ::= W3 <space><text string><CR>|W3 <CR>

<BRCA command> ::= BRCA <space><strand identifier>, \
<lesson number>,<problem number>CR>|
<BRCA command>,<text string><CR>

<BRWA command> ::= BRWA <space><strand identifier>,
<lesson number>,<problem number><CR>|
<BRWA command>,<text string><CR>

<WS command> ::= WS <space><text string><CR>|WS<CR>

<strand identifier> ::= %1 to 6 letters%

<lesson number> ::= ¥natural number 1 to 999%

<problem number> ::= ¥natural number 1 to 128%

) e , 8 2

Miscelleneous and "Primitives":

<text string> ::= <left superquote><character string>
<right superquote>

<charecter string> ::= <charascter><character string>|<empty>
<letter> ::= ¥a - z, upper or lower case¥

<decimel number> ::= ¥*any number in decimal form with not morc than
9 significent digits; includes integers#*

<lef: superquote> ::= *¥Philco: less-than;or-equal sign
*Teletype: Ctrl-Shift-L

<right superquote> ::= ¥Philco: greater-than-or-equal sign
*Teletype: Ctrl-Shift-M

43
g 83

APPENDIX E

Sample Coded Problem

84

SAMPLE CODED PROBLEM
(taken from Lesson 4)

PROB

"ATD WILL DO EXPONENTIATION BEFORE IT DOES MULTIPLICATION,
ADDITION OR SUBTRACTION.

WHAT WOULD AID ANSWER?

TYPE 5 * 243"
TELL
"5 % 213 = 5 % 8 = Lo"
HINT
"ATD WOULD EVALUATE 213 FIRST."
HINT
"DO 243 FIRST, THEN MULTIPLY BY 5."
NOTEQ "1000"
WA

"WRONG. AID WOULD EVALUATE 2t3 FIRST. TRY AGAIN,"
EQ "ho"

WS
"WRONG, 5 * 293 =5 % 8 = Lo"

ERCA L,k,6

SPROB

"IET!'S GO THROUGH THIS PROBLEM STEP-BY-STEP,

WHICH EXPRESSION IS EVALUATED FIRST IN THIS COMMAND?
TYPE 32/k4t2

A, hxp
B. .32/h4
C. btz
N. NONE"

TELL
"C (EXPONENTIATION IS DONE BEFORE DIVISION.)"

HINT
"EXPONENTZATION IS DONE FIRST."

EXACT
I1)_'> 1‘2 "

bl

tw

DIVISION,

MC "C 1"t
CA

WA

SPROB
"...AND WHAT IS THE VALUE OF kt2?"

TELL
"Lt = 4xh4 = 16"

HINT
"o = 4 * 4 = 292"

EQ 1" 16 1"
CA

WA

SPROB ‘
"SO 1HE VALUE OF 32/4t2 IS THE SAME AS THE VALUE OF 32/?7??"

TELL
"16 (ht2 = 16)"

HINT
"WHAT ANSWER DID YOU GET FOR Lt2?"

HINT
"32 DIVIDED BY L4t2 IS THE SAME AS 32 DIVIDED BY WHAT NUMEER?

EQ " 16 "
CA

WA

45
86

SPROB
"THEN WHAT WOULD AID ANSWER TO THIS COMMAND?
TYPE 32/Lt2."

TELL
"32/ht2 = 32/16 = 2"

HINT
"WHAT IS THE VALUE OF 32/h4t2"

HINT
"AID WILL DO EXPONENTIATION BEFORE DIVISION."

EQ 112"
CA

WA

SPROB
"WHAT WOULD AID ANSWER?
TYPE 1013 * 2"

TELL
"1043 * 2 = 1000 * 2 = 2000"

HTNT
"AID WOULD DO EXPONENTIATION EEFORE MULTIPLICATION."

HINT
"Hint: 1043 = 10 * 10 * 10."

NOTEQ "10000"

WA
"WRONG. AID WOULD DO EXPONENTIATION EEFORE MULTIPLICATION,"

EQ ﬂzow"
WS

"WRONG. 1043 * 2 = 1000 * 2 = 2000"
BRCA L,4,6

46

SPROB

"THERE IS AN EASY WAY TO DO PROBLEMS THAT HAVE EXPONENTIATION AND
ALSO SOME OTHER OFERATION: IMAGINE THAT THERE ARE PARENTHESES AROUND
THE TERM WITH THE EXPONENTIATION,

FOR EXAMPIE,

TO DO 3t4 + 2, DO (3tk4) + 2.

TO DO 625/5%2, DO 625/(5%2).

TO DO 442 * 2tk, DO (L412) * (244),

WHAT IS THE VALUE OF 5t2/27

TELL _
"5t2/2 = (5%2)/2 = 25/1 = 12.5"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES. THEN TRY TO DO IT."

HINT
"5t2/2 = (512)/2 = 279"

EQ "12.5"
CA

WA

SFROB
"WHAT WOULD AID ANSWER?
TYPE 10%3/10t2"

TELL
"1043/10t2 = (10%3)/(10%2) = 1000/100 = 10"

HINT .
"REWRITE THE EXPRESSION WITH PARENTHESES (USE TWO PAIRS).
THEN FIND THE VALUE,"

HINT
"10t3/10%2 = (1013)/(10%2) = ?27"

EQ 'ulon
CA

WA

e
. 7 88

SPROB
"WHAT WOULD AID ANSWER?
TYPE 1013 0 10t2"

TELL
"10%3 - 10%2 = (10%3) - (10%2) = 1000 - 100 = 900"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES EBEFORE YOU DO IT."

HINT
"10%3 - 10%2 = (10%3) - (10%2) = ??29"

EQ, 1" 900 1"
CA

WA

)N
° 89

(Contiued from inside front cover)

7
° 96 R. C. Atkinson, J. W, Brefsford, and R, M, Shiffeir . Multi=process madels for memory with applications to a continuous presentation task.
April 13, 1966, .G, math, Psychol, , 1967, 4, 277-300). . .
97 P, Suppesad E, Crothers. Some remarks on stimulus-response theories of language leatning. June 12, 1966.
98 R. Bjork. All=or=nane subprocesses In the learning of complex sequences, . math, Psychol,, 1968, 1, 182-95),
; 99 E. Gammon, The statistical determination of linguistic units. July |, 1966,
: o 100 P. Suwu. L. ‘Hyman, and ‘M. Jerman, Linear: wuolml models for response and latency performance In arithmetic, On J P, HIlY (ed,),
. Minnesota §m_on Child Pt,woholgx Mlnmpolll. Minn.: 1967, Pp. 160-200),
101 L. Young. Effects of lnllﬂl‘ll between reinforcaments and test trials In palred-associate learning. August !, 1966.
102 “Hi A, Wilson, An |mmt|ntm of lingutstic: unlt size In'memory processes. ‘August 3, 1966,
108:. J.T, Townsend. Choloe behavior In‘a cued-recognition task. August 8, 1966,
104 WL H Batohelder. Amnnlnl analysis of multl=tevel verbal leaming, -August 9, 1966,
M. s, Taylor, - The:cbserving response In a oued payohophysical task, Abgust 10, 1966, :
R‘ A Blork l.nlnlm and :hut-hrm mnﬂon of plind umlm in relation to specific uquonon ov lnumumupn intervals,

‘and R Shlﬂrln. Somo Tm—mu mdcls for mamory smulur 30, 1966, .
.. thrke. ’Amolmd program iri elementary-school mathomatics=-the third year, . January 30, 1967,
1, ‘Rosenthal=Hilt, - Concept formation by kindergarten ¢hildren In @ oard=sorting task, Fubruary 27, 1967,
Shiffrin, Human memary: & proposad system and Its control processes. -Rarck: 21, 1967,
; n.le cmld-m m In the design of the' Sunfwd computer-based curriculum in lnltul mdlng. Jum 1, 1967,
' sted instrictions] system, -June so, 1967, -
ing’ und-r "onm ontrolr - the Stanford Project, July 14,1967, "
nllm " a muan d ovutmdcwutnlmaal procadures. July 21, |%7.

m}»un mm " : g
oh inteevals cn parformance in 2 continuous m«lmnm mk. August 1, 1967.
stributed practice In computerized spelling diills., mm la. |957.
for simpie additton problims. : August 21, 1967, "

jon’l nlunlndlnm m nmmuusmmmm. Am:tzs 1967,

a seadhing syite for optmal item allouation; Noy Co e

. . on altérative tast stimelus representations. November 25, 1969,
soessing:in visinl gaavch tasks, March 16, 1970~ - L
18,2970, -~ .- S :

mstruction it reading control: the Stanford project,

&

context

ER

Full Tt Provided by ERIC.

